RSC Mechanochemistry最新文献

筛选
英文 中文
Moving mechanochemistry forward 推动机械化学向前发展
RSC Mechanochemistry Pub Date : 2025-01-07 DOI: 10.1039/D4MR90021A
James Batteas, Kerstin G. Blank, Evelina Colacino, Franziska Emmerling, Tomislav Friščić, James Mack, Jeffrey Moore, Maria Elena Rivas and Wilfred Tysoe
{"title":"Moving mechanochemistry forward","authors":"James Batteas, Kerstin G. Blank, Evelina Colacino, Franziska Emmerling, Tomislav Friščić, James Mack, Jeffrey Moore, Maria Elena Rivas and Wilfred Tysoe","doi":"10.1039/D4MR90021A","DOIUrl":"https://doi.org/10.1039/D4MR90021A","url":null,"abstract":"<p >A graphical abstract is available for this content</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 1","pages":" 10-19"},"PeriodicalIF":0.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr90021a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of ball milling parameters on the mechano-chemical conversion of polyolefins. 球磨参数对聚烯烃机械-化学转化的影响。
RSC Mechanochemistry Pub Date : 2024-12-18 DOI: 10.1039/d4mr00098f
Adrian H Hergesell, Claire L Seitzinger, Justin Burg, Renate J Baarslag, Ina Vollmer
{"title":"Influence of ball milling parameters on the mechano-chemical conversion of polyolefins.","authors":"Adrian H Hergesell, Claire L Seitzinger, Justin Burg, Renate J Baarslag, Ina Vollmer","doi":"10.1039/d4mr00098f","DOIUrl":"https://doi.org/10.1039/d4mr00098f","url":null,"abstract":"<p><p>Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers. However, absolute yields are typically low, especially from polyolefins which are notoriously difficult to depolymerize. To increase the viability of ball milling as a recycling technique, the effect of milling parameters on small hydrocarbon and monomer yields has to be understood. Herein, we systematically investigate the influence of sphere material, milling frequency, plastic filling degree, and milling temperature. Heavy spheres and high milling frequencies boost hydrocarbon yields by maximizing mechanical forces and frequency of collisions. While the dose of kinetic energy is commonly used to describe mechano-chemical processes, we found that it does not capture the mechano-chemical depolymerization of polyolefins. Instead, we rationalized the results based on the Zhurkov equation, a model developed for the thermo-mechanical scission of polymers under stress. In addition, low plastic filling degrees allow for high percentage yields, but cause significant wear on the grinding tools, prohibiting sustained milling. Milling below 40 °C is beneficial for brittle chain cleavage and depolymerization. This study provides a new approach to rationalize the influence of individual milling parameters and their interplay and serves as a starting point to derive design principles for larger-scale mechano-chemical depolymerization processes.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanochemical synthesis of rock salt-type Na2CaSnS4 as a sodium-ion conductor† 岩盐型钠离子导体Na2CaSnS4的机械化学合成
RSC Mechanochemistry Pub Date : 2024-12-03 DOI: 10.1039/D4MR00028E
Hamdi Ben Yahia, Atsushi Sakuda and Akitoshi Hayashi
{"title":"Mechanochemical synthesis of rock salt-type Na2CaSnS4 as a sodium-ion conductor†","authors":"Hamdi Ben Yahia, Atsushi Sakuda and Akitoshi Hayashi","doi":"10.1039/D4MR00028E","DOIUrl":"https://doi.org/10.1039/D4MR00028E","url":null,"abstract":"<p >Na<small><sub>2</sub></small>CaSnS<small><sub>4</sub></small> was prepared by mechanochemical synthesis from a mixture of Na<small><sub>2</sub></small>S, CaS, and SnS<small><sub>2</sub></small>. The crystal structure was determined from X-ray powder diffraction data. The chemical composition was confirmed by energy dispersive X-ray spectroscopy, and the ionic conductivity was measured using electrochemical impedance spectroscopy. Na<small><sub>2</sub></small>CaSnS<small><sub>4</sub></small> crystallizes with a rock salt-type structure, space group <em>Fm</em><img><em>m</em>, <em>a</em> = 5.6842 (3) Å, <em>V</em> = 183.66 (2) Å<small><sup>3</sup></small>, and <em>Z</em> = 1. All the cations are statistically disordered over a unique crystallographic site and are octahedrally coordinated to the sulfur atoms. The ionic conductivity of Na<small><sub>2</sub></small>CaSnS<small><sub>4</sub></small> is 4.2 × 10<small><sup>−8</sup></small> S cm<small><sup>−1</sup></small> (<em>E</em><small><sub>a</sub></small> = 0.6 eV) at 33 °C.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 1","pages":" 159-164"},"PeriodicalIF":0.0,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00028e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanochemical synthesis and transformation of the polymorphic double carbonates fairchildite and buetschliite, (K2Ca(CO3)2): an in situ X-ray powder diffraction study† 多晶双碳酸盐(K2Ca(CO3)2)的机械化学合成与转化:原位x射线粉末衍射研究。
RSC Mechanochemistry Pub Date : 2024-11-28 DOI: 10.1039/D4MR00093E
Volker Kahlenberg, Doris E. Braun, Wolfgang Schmidt, Hang Liu, Sebastian Leiting and Claudia Weidenthaler
{"title":"Mechanochemical synthesis and transformation of the polymorphic double carbonates fairchildite and buetschliite, (K2Ca(CO3)2): an in situ X-ray powder diffraction study†","authors":"Volker Kahlenberg, Doris E. Braun, Wolfgang Schmidt, Hang Liu, Sebastian Leiting and Claudia Weidenthaler","doi":"10.1039/D4MR00093E","DOIUrl":"10.1039/D4MR00093E","url":null,"abstract":"<p >This study presents the mechanochemical synthesis of the two K<small><sub>2</sub></small>Ca(CO<small><sub>3</sub></small>)<small><sub>2</sub></small> polymorphs, fairchildite and buetschliite, from CaCO<small><sub>3</sub></small> and K<small><sub>2</sub></small>CO<small><sub>3</sub></small> using a shaker mill. Unlike previous methods requiring high temperatures and prolonged heating, fairchildite, a high-temperature polymorph, is formed initially in all experiments, adhering to Ostwald's rule of stages. Notably, the transformation to the stable buetschliite phase can be achieved by varying milling parameters, particularly frequency and moisture content. The results suggest that pressure, rather than temperature, plays a significant role in this phase transition, with moisture further accelerating the transformation. These findings offer a new, efficient route for the synthesis of these polymorphs, highlighting the critical influence of milling conditions on the reaction pathway.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 1","pages":" 152-158"},"PeriodicalIF":0.0,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603408/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanochemical ZIF-9 formation: in situ analysis and photocatalytic enhancement evaluation† 机械化学ZIF-9形成:原位分析和光催化强化评价
RSC Mechanochemistry Pub Date : 2024-11-19 DOI: 10.1039/D4MR00114A
Noelia Rodríguez-Sánchez, Carsten Prinz, Ralf Bienert, Menta Ballesteros, A. Rabdel Ruiz Salvador, Biswajit Bhattacharya and Franziska Emmerling
{"title":"Mechanochemical ZIF-9 formation: in situ analysis and photocatalytic enhancement evaluation†","authors":"Noelia Rodríguez-Sánchez, Carsten Prinz, Ralf Bienert, Menta Ballesteros, A. Rabdel Ruiz Salvador, Biswajit Bhattacharya and Franziska Emmerling","doi":"10.1039/D4MR00114A","DOIUrl":"https://doi.org/10.1039/D4MR00114A","url":null,"abstract":"<p >Efficient treatment of persistent pollutants in wastewater is crucial for sustainable water management and environmental protection. This study addresses this challenge by investigating the mechanochemical synthesis and photocatalytic performance of ZIF-9, a cobalt-based zeolitic imidazolate framework. Using synchrotron-based powder X-ray diffraction, we provide real-time insights into the formation dynamics of ZIF-9 during mechanosynthesis. Our results show that mechanochemically synthesised ZIF-9 exhibits superior photocatalytic activity compared to its solvothermally prepared counterpart, achieving a 2-fold increase in methylene blue degradation rate. This research not only advances our understanding of the synthesis and properties of ZIF-9, but also demonstrates the potential of mechanochemical approaches in the development of high-performance, sustainably produced materials for water treatment and other environmental applications.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 1","pages":" 116-126"},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00114a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanochemical coupling of two coupled kinesin monomers: comparison with that of the single dimer† 两偶联激酶单体的机械化学偶联:与单二聚体的比较
RSC Mechanochemistry Pub Date : 2024-11-16 DOI: 10.1039/D4MR00057A
Ping Xie
{"title":"Mechanochemical coupling of two coupled kinesin monomers: comparison with that of the single dimer†","authors":"Ping Xie","doi":"10.1039/D4MR00057A","DOIUrl":"https://doi.org/10.1039/D4MR00057A","url":null,"abstract":"<p >The dynamics of cargo transport by two coupled kinesin monomers, such as kinesin-1, kinesin-2 and kinesin-3, is studied theoretically and is compared with that by the corresponding single dimer on the basis of our proposed model for the mechanochemical coupling of the two coupled monomers and that of the single dimer. It is shown that if the stalk, which connects the monomer and cargo, has a short length <em>L</em><small><sub>S</sub></small> (<em>e.g.</em>, <em>L</em><small><sub>S</sub></small> &lt; 5 nm) the cargo transport by the two monomers can be efficient with an unloaded velocity that can be similar to that by the corresponding single dimer, whereas the cargo transport by the two monomers with a long <em>L</em><small><sub>S</sub></small> can only be inefficient with an unloaded velocity and a stall force much smaller than those with the short <em>L</em><small><sub>S</sub></small>. Although the unloaded velocity for the two coupled kinesin-1 monomers with a short <em>L</em><small><sub>S</sub></small> can be similar to that for the single kinesin-1 dimer, the stall force for the former is reduced by about 2 times relative to that for the latter. The dynamics of the two coupled kinesin-3 KIF1A monomers relative to the single kinesin-3 dimer is similar to that of the two coupled kinesin-1 monomers relative to the single kinesin-1 dimer. By contrast, the stall force for the two kinesin-2 KIF3A monomers with a short <em>L</em><small><sub>S</sub></small> can be similar to that for the single kinesin-2 KIF3AA, KIF3BB or KIF3AB dimer. The theoretical results agree well with the available experimental evidence. The underlying mechanism of the two coupled kinesin-1 or kinesin-3 monomers with the short <em>L</em><small><sub>S</sub></small> having an evidently smaller stall force than the corresponding single dimer and the two coupled kinesin-2 KIF3A monomers with the short <em>L</em><small><sub>S</sub></small> having a stall force similar to that of the corresponding single dimer is explained.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 1","pages":" 127-141"},"PeriodicalIF":0.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00057a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid mechanochemical synthesis and properties in Pb–Bi–S system†‡ Pb-Bi-S体系的快速机械化学合成与性能研究[j]
RSC Mechanochemistry Pub Date : 2024-11-13 DOI: 10.1039/D4MR00107A
Peter Baláž, Erika Dutková, Nina Daneu, Michal Hegedüs, Matej Baláž, Emmanuel Guilmeau, Róbert Džunda, Mária Bali-Hudáková, Veronika Garbárová, Jianzhong Jiang and Marcela Achimovičová
{"title":"Rapid mechanochemical synthesis and properties in Pb–Bi–S system†‡","authors":"Peter Baláž, Erika Dutková, Nina Daneu, Michal Hegedüs, Matej Baláž, Emmanuel Guilmeau, Róbert Džunda, Mária Bali-Hudáková, Veronika Garbárová, Jianzhong Jiang and Marcela Achimovičová","doi":"10.1039/D4MR00107A","DOIUrl":"https://doi.org/10.1039/D4MR00107A","url":null,"abstract":"<p >We prepared a ternary sulfide with a stoichiometry close to Pb<small><sub>6</sub></small>Bi<small><sub>2</sub></small>S<small><sub>9</sub></small> from PbS, Bi, and S precursors using mechanochemical synthesis. After 5 min of high-energy milling, conversion of the precursors to Pb<small><sub>5.95</sub></small>Bi<small><sub>2.02</sub></small>S<small><sub>9.03</sub></small> was confirmed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS). Further milling (up to 120 min) led to the metal-enriched and sulfur-deficient composition Pb<small><sub>6.40</sub></small>Bi<small><sub>2.24</sub></small>S<small><sub>8.36</sub></small>. Values of the specific surface area of the produced powder samples were used as an indicator of the transition from the mechanical activation mode to the mechanochemical synthesis mode. The products crystallized in the galena structure, with the crystallite size ranging from 5 to 15 nm, as determined by X-ray diffractometry (XRD) with Rietveld refinement and transmission electron microscopy (TEM). The dissolution of Bi from the synthesized nanocrystals corresponds to changes in the specific surface area. Spark plasma sintering (SPS) densified ingots in the temperature range of 300–525 K exhibit semiconducting properties and a low thermal conductivity of 0.38–0.5 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small>, making them promising for thermoelectric applications. The possibility of modifying the properties of a ternary Pb–Bi–S system by mechanochemistry paves the way for the synthesis of more sophisticated ternary and multinary structures suitable for energy applications.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 1","pages":" 91-99"},"PeriodicalIF":0.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00107a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanosynthesis of ruthenium trisbipyridyl complexes and application in photoredox catalysis in a ball-mill† 三联吡啶钌配合物的机械合成及其在球磨机光氧化还原催化中的应用
RSC Mechanochemistry Pub Date : 2024-11-08 DOI: 10.1039/D4MR00112E
Florian Luttringer, Matthieu Lavayssiere, Enita Rastoder, Nikita Salov, Tristan Gravelet, François Quintin, Julien Pinaud, Frédéric Lamaty and Xavier Bantreil
{"title":"Mechanosynthesis of ruthenium trisbipyridyl complexes and application in photoredox catalysis in a ball-mill†","authors":"Florian Luttringer, Matthieu Lavayssiere, Enita Rastoder, Nikita Salov, Tristan Gravelet, François Quintin, Julien Pinaud, Frédéric Lamaty and Xavier Bantreil","doi":"10.1039/D4MR00112E","DOIUrl":"https://doi.org/10.1039/D4MR00112E","url":null,"abstract":"<p >Herein, we developed the mechanosynthesis of ruthenium trisbipyridyl complexes. Such complexes can be difficult to prepare in solution, with long reaction times and average yields. With ball-milling, less than 3.5 hours of milling were sufficient to obtain the complexes in high yield. Such complexes were then evaluated as catalysts in the light-promoted mechanochemical reductive dehalogenation reaction. In addition to working under solvent-less conditions, the use of a Hantzsch amide instead of the classical ester allowed drastic simplification of the purification of the final compounds.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 1","pages":" 108-115"},"PeriodicalIF":0.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00112e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and kinetic modelling study of NC palladacycles mechanosynthesis† 数控palladycle机械合成的实验与动力学建模研究
RSC Mechanochemistry Pub Date : 2024-11-08 DOI: 10.1039/D4MR00082J
Rachel J. Allenbaugh, Tia M. Ariagno and Jeffrey Selby
{"title":"Experimental and kinetic modelling study of NC palladacycles mechanosynthesis†","authors":"Rachel J. Allenbaugh, Tia M. Ariagno and Jeffrey Selby","doi":"10.1039/D4MR00082J","DOIUrl":"https://doi.org/10.1039/D4MR00082J","url":null,"abstract":"<p >Ball mill mechanosynthesis provides a method for direct C–H activation to prepare NC palladacycle precatalysts <em>via</em> liquid-assisted grinding (LAG). Methanol and dimethylsulfoxide were used as non-innocent LAG reagents, coordinating to the Pd center and producing more reactive intermediates to speed reactions. Kinetic modelling results are consistent with a mechanism of nucleation and autocatalytic growth in these processes.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 1","pages":" 30-36"},"PeriodicalIF":0.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00082j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trapping in situ generated CF3-nitrile imines with maleimides under solvent-free mechanochemical conditions† 在无溶剂机械化学条件下用马来酰亚胺捕获原位生成的cf3 -腈亚胺†
RSC Mechanochemistry Pub Date : 2024-11-07 DOI: 10.1039/D4MR00075G
Greta Utecht-Jarzyńska, Szymon Jarzyński and Marcin Jasiński
{"title":"Trapping in situ generated CF3-nitrile imines with maleimides under solvent-free mechanochemical conditions†","authors":"Greta Utecht-Jarzyńska, Szymon Jarzyński and Marcin Jasiński","doi":"10.1039/D4MR00075G","DOIUrl":"https://doi.org/10.1039/D4MR00075G","url":null,"abstract":"<p >A series of trifluoromethylated pyrrolo[3,4-<em>c</em>]pyrazoles was obtained <em>via</em> mechanochemical (3 + 2)-cycloaddition of <em>in situ</em> generated trifluoroacetonitrile imines with maleimide and its <em>N</em>-aliphatic/aromatic analogues. The presented work demonstrated that the aforementioned 1,3-dipoles can be efficiently trapped with electron-deficient dipolarophiles under solvent-free ball-milling conditions.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 1","pages":" 79-82"},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00075g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信