Fayed Abdullah Alrashaidi, Soraya Rahpeima, Xuan Luo, Kasturi Vimalanathan, Abdulrahman S. Alotabi, Thaar Alharbi, Xianjue Chen, Dechao Chen, Youhong Tang, Christopher Gibson, Nadim Darwish, Qin Li and Colin L. Raston
{"title":"Vortex mediated fabrication of 2D antimonene sheets from antimony powder†","authors":"Fayed Abdullah Alrashaidi, Soraya Rahpeima, Xuan Luo, Kasturi Vimalanathan, Abdulrahman S. Alotabi, Thaar Alharbi, Xianjue Chen, Dechao Chen, Youhong Tang, Christopher Gibson, Nadim Darwish, Qin Li and Colin L. Raston","doi":"10.1039/D4MR00058G","DOIUrl":null,"url":null,"abstract":"<p >Antimony powder is transformed into 2D antimonene in a vortex fluidic device (VFD) at ambient conditions, depending on the choice of solvent (optimised as a 1 : 1 mixture of isopropyl alcohol and dimethylformamide) and the operating parameters of the microfluidic platform which houses a rapidly rotating quartz tube inclined at +45°. It is hypothesised that the Coriolis force from the hemispherical base of the tube, as typhoon like high-shear topological fluid flow down to submicron dimensions, generates localised heating at the quartz interface. This melts the antimony powder (m.p. 630.6 °C) <em>in situ</em> which crystallizes in the β-phase, with semi-conducting antimonene a few layers thick, and demonstrating novel photoluminescence.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 5","pages":" 432-436"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00058g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Mechanochemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mr/d4mr00058g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Antimony powder is transformed into 2D antimonene in a vortex fluidic device (VFD) at ambient conditions, depending on the choice of solvent (optimised as a 1 : 1 mixture of isopropyl alcohol and dimethylformamide) and the operating parameters of the microfluidic platform which houses a rapidly rotating quartz tube inclined at +45°. It is hypothesised that the Coriolis force from the hemispherical base of the tube, as typhoon like high-shear topological fluid flow down to submicron dimensions, generates localised heating at the quartz interface. This melts the antimony powder (m.p. 630.6 °C) in situ which crystallizes in the β-phase, with semi-conducting antimonene a few layers thick, and demonstrating novel photoluminescence.