RSC Mechanochemistry最新文献

筛选
英文 中文
Single-molecule force spectroscopy shows that side chain interactions govern the mechanochemical response of polypeptide α-helices and prevent the formation of β-sheets† 单分子力谱分析表明,侧链相互作用控制了多肽α-螺旋的机械化学反应,并阻止了β-片†的形成
RSC Mechanochemistry Pub Date : 2024-08-26 DOI: 10.1039/D4MR00068D
Marie Asano, Damien Sluysmans, Nicolas Willet, Colin Bonduelle, Sébastien Lecommandoux and Anne-Sophie Duwez
{"title":"Single-molecule force spectroscopy shows that side chain interactions govern the mechanochemical response of polypeptide α-helices and prevent the formation of β-sheets†","authors":"Marie Asano, Damien Sluysmans, Nicolas Willet, Colin Bonduelle, Sébastien Lecommandoux and Anne-Sophie Duwez","doi":"10.1039/D4MR00068D","DOIUrl":"https://doi.org/10.1039/D4MR00068D","url":null,"abstract":"<p >Secondary α-helix and β-sheet structures are key scaffolds around which the rest of the residues condense during protein folding. Despite their key role in numerous processes to maintain life, little is known about their properties under force. Their stability under mechanical stress, as constantly experienced in the turbulent environment of cells, is however essential. Here, we designed and synthesized two pH-responsive polypeptides, poly(<small>L</small>-glutamic acid) and poly(<small>L</small>-lysine), for single-molecule mechanochemistry experiments using AFM to probe the mechanical unfolding of α-helix and β-sheet secondary motifs. The force experiments, supported by simulations, reveal a superior mechanical stability of the poly(<small>L</small>-lysine) α-helix, which we attribute to hydrophobic interactions of the alkyl side chains. Most importantly, our results show that these interactions play a key role in inhibiting the formation of a metastable β-sheet-like structure when the polypeptide is subjected to mechanical deformations, which might have important implications in the mechanism behind polyQ diseases.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 1","pages":" 37-44"},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00068d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient mechanochemistry of beta blockers: neutralization, salification, and effect of liquid additives† β-受体阻滞剂的高效机械化学:中和、盐化和液体添加剂的影响†。
RSC Mechanochemistry Pub Date : 2024-08-19 DOI: 10.1039/D4MR00078A
Delbert S. Botes, Jesus Daniel Loya, Mahboubeh Ghahremani, Bailee B. Newham, Mikaela I. Aleman, Gary C. George, Daniel K. Unruh and Kristin M. Hutchins
{"title":"Efficient mechanochemistry of beta blockers: neutralization, salification, and effect of liquid additives†","authors":"Delbert S. Botes, Jesus Daniel Loya, Mahboubeh Ghahremani, Bailee B. Newham, Mikaela I. Aleman, Gary C. George, Daniel K. Unruh and Kristin M. Hutchins","doi":"10.1039/D4MR00078A","DOIUrl":"https://doi.org/10.1039/D4MR00078A","url":null,"abstract":"<p >Beta blockers are a class of ubiquitous cardiovascular drugs that have collectively received little attention from a crystal engineering standpoint. Here, we describe the use of mechanochemistry in the salification of five beta blockers (propranolol, metoprolol, acebutolol, atenolol, and labetalol) with nicotinic and isonicotinic acid. Firstly, liquid assisted grinding (LAG) was used to neutralize the commercial beta blocker salts, enabling the efficient gram-scale formation of the free bases, which are essential for cocrystallization. Thereafter, 1 : 1 mechanochemical cocrystallizations were successful in all but one case and nine salts were characterized, eight of which are novel. Furthermore, the racemic free base crystal structure of acebutolol is reported for the first time, as well as the first multicomponent crystal of labetalol that is not a simple salt. Salification was enabled by the large p<em>K</em><small><sub>a</sub></small> differences between the components, which facilitated the protonation of the basic amine on the beta blockers' alkanolamine skeleton. Thereafter, charge-assisted hydrogen bonding promoted cocrystallization. We envisage salification to be applicable to any beta blocker, considering the current study encompasses approximately one quarter of this drug class. Lastly, the role of different liquid additives in the LAG process was assessed, and the solvent identity was found to play a substantial role in the mechanochemical outcome, although it did not strictly correlate with polarity. This study demonstrates that LAG screening with a wide selection of solvents provides a path to achieve full conversion to products, explore the crystal landscape of multicomponent crystals, and assist in identifying additional phases and/or late stage polymorphs in solid form development.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 5","pages":" 492-503"},"PeriodicalIF":0.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00078a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct arylation of alkyl fluorides using in situ mechanochemically generated calcium-based heavy Grignard reagents† 使用原位机械化学生成的钙基重格氏试剂对烷基氟化物进行直接芳基化处理†。
RSC Mechanochemistry Pub Date : 2024-08-13 DOI: 10.1039/D4MR00067F
Pan Gao, Julong Jiang, Yamato Fukuzawa, Satoshi Maeda, Koji Kubota and Hajime Ito
{"title":"Direct arylation of alkyl fluorides using in situ mechanochemically generated calcium-based heavy Grignard reagents†","authors":"Pan Gao, Julong Jiang, Yamato Fukuzawa, Satoshi Maeda, Koji Kubota and Hajime Ito","doi":"10.1039/D4MR00067F","DOIUrl":"https://doi.org/10.1039/D4MR00067F","url":null,"abstract":"<p >Here, we report the reaction of calcium-based heavy Grignard reagents, which are easily generated by a mechanochemical method, with unactivated alkyl fluorides in the absence of transition metal catalysts to produce the corresponding arylated products in moderate to good yields. This is the first example of the nucleophilic substitution of an inert C(sp<small><sup>3</sup></small>)–F bond by an organocalcium species. Preliminary mechanistic studies based on theoretical calculations indicate that tetrameric aryl calcium species facilitate the unprecedented C(sp<small><sup>3</sup></small>)–F bond arylation.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 5","pages":" 486-491"},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00067f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid and efficient mechanosynthesis of alkali and alkaline earth molybdates† 碱和碱土钼酸盐的快速高效机械合成†。
RSC Mechanochemistry Pub Date : 2024-08-12 DOI: 10.1039/D4MR00042K
Andres Lara-Contreras, Patrick Julien, Jennifer Scott and Emily C. Corcoran
{"title":"Rapid and efficient mechanosynthesis of alkali and alkaline earth molybdates†","authors":"Andres Lara-Contreras, Patrick Julien, Jennifer Scott and Emily C. Corcoran","doi":"10.1039/D4MR00042K","DOIUrl":"https://doi.org/10.1039/D4MR00042K","url":null,"abstract":"<p >Complex molybdates are traditionally prepared <em>via</em> solid-state synthesis and aqueous chemistry methods, which generally require long reaction times and large solvent volumes or high sintering temperatures. However, these techniques often result in undesired secondary species, incomplete reactions, and relatively low yields. Mechanochemistry has proven effective for the synthesis of complex molybdates. This work expands on the development of the mechanochemical synthesis of various heptamolybdates (<em>i.e.</em>, sodium, rubidium, and cesium), and trimolybdates (<em>i.e.</em>, sodium, rubidium, cesium, strontium, and barium). The obtained materials were characterized <em>via</em> powder X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, thermo-gravimetric analysis, and scanning electron microscopy to assess the purity, morphology, and quality of the sample. High purity samples of the various trimolybdates and heptamolybdates were obtained in less than three hours of reaction time, with minimal energy input and by-products. Mechanochemistry provides a fast, more sustainable, and simple procedure for the synthesis of a wide variety of both trimolybdates and heptamolybdates including the monohydrate form of sodium trimolybdate instead of the trihydrate variant commonly obtained from aqueous reactions.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 5","pages":" 477-485"},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00042k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvent-free mechanochemical synthesis of azo dyes† 偶氮染料的无溶剂机械化学合成技术†。
RSC Mechanochemistry Pub Date : 2024-08-09 DOI: 10.1039/D4MR00053F
Lin Zhang, Qinglang Song, Yanxian Wang, Rui Chen, Yu Xia, Bin Wang, Weiwei Jin, Shaofeng Wu, Ziren Chen, Azhar Iqbal, Chenjiang Liu and Yonghong Zhang
{"title":"Solvent-free mechanochemical synthesis of azo dyes†","authors":"Lin Zhang, Qinglang Song, Yanxian Wang, Rui Chen, Yu Xia, Bin Wang, Weiwei Jin, Shaofeng Wu, Ziren Chen, Azhar Iqbal, Chenjiang Liu and Yonghong Zhang","doi":"10.1039/D4MR00053F","DOIUrl":"https://doi.org/10.1039/D4MR00053F","url":null,"abstract":"<p >An efficient diazotization of phenolic compounds with aryltriazenes is herein demonstrated by employing ball milling under catalyst-, promoter- and solvent-free conditions. The present protocol offers several advantages including mild conditions, good selectivity and high yields, simple operation and practical gram-scale synthesis. Overall, this novel strategy significantly improves the reaction efficiency, simplifies purification procedures of the diazotization reaction and provides potential for the industrial preparation of azo dyes.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 5","pages":" 447-451"},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00053f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ball milling assisted mechano-catalytic dye degradation using SrTiO3 nanoparticles† 使用 SrTiO3 纳米粒子进行球磨辅助机械催化染料降解†。
RSC Mechanochemistry Pub Date : 2024-08-09 DOI: 10.1039/D4MR00047A
Aman Shukla, Akshay Gaur, Shivam Dubey and Rahul Vaish
{"title":"Ball milling assisted mechano-catalytic dye degradation using SrTiO3 nanoparticles†","authors":"Aman Shukla, Akshay Gaur, Shivam Dubey and Rahul Vaish","doi":"10.1039/D4MR00047A","DOIUrl":"https://doi.org/10.1039/D4MR00047A","url":null,"abstract":"<p >Ball milling stands as a versatile and widely used technique that involves the mechanical grinding of solid materials <em>via</em> ball mills. Conventionally employed for synthesizing nanomaterials and complex compounds, this method has now been harnessed directly for catalysis due to its capability for surface charge separation. Herein, in the present study, we have explored the potential of ball milling to activate material with low piezoelectric coefficient for catalysis by demonstrating the ball-milling-induced mechano-catalytic activity of SrTiO<small><sub>3</sub></small> (STO) nanoparticles for the degradation of toxic methylene blue (MB) dye. With the assistance of ball milling, STO nanoparticles (of 0.3 g dosage) were found capable of degrading 70% of 10 ppm MB dye at 400 rpm speed with 10 Zr balls in just 1 hour. A series of parametric studies were performed to analyze the effect of various process conditions, like catalyst dosage, initial concentration of dye, ball milling speed, and number of milling balls. Further, scavenging tests were carried out to detect the responsible reactive species for dye degradation. Moreover, the present ball milling process was compared with the trivial ultrasonication method where STO showed just 12% degradation in 1 hour. The results manifest the superiority of ball milling catalysis which not only offers precise control over reaction parameters but also encompasses scalability, simplicity, and better potential to conduct catalysis under environmentally benign conditions.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 5","pages":" 465-476"},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00047a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling mechanochemistry: pressure dependence of Diels–Alder cycloaddition reaction kinetics† 机械化学建模:Diels-Alder 环加成反应动力学的压力依赖性†。
RSC Mechanochemistry Pub Date : 2024-08-01 DOI: 10.1039/D4MR00063C
Nicholas Hopper, François Sidoroff, Juliette Cayer-Barrioz, Denis Mazuyer, Bo Chen and Wilfred T. Tysoe
{"title":"Modeling mechanochemistry: pressure dependence of Diels–Alder cycloaddition reaction kinetics†","authors":"Nicholas Hopper, François Sidoroff, Juliette Cayer-Barrioz, Denis Mazuyer, Bo Chen and Wilfred T. Tysoe","doi":"10.1039/D4MR00063C","DOIUrl":"https://doi.org/10.1039/D4MR00063C","url":null,"abstract":"<p >We analyze the effect of pressure on the Diels–Alder (D–A) dimerization reactions using Evans–Polanyi (E–P) theory, a thermodynamic analysis of the way in which a perturbation, in this case a hydrostatic pressure, modifies a reaction rate. Because it is a thermodynamic analysis, the results depend only on the volumes of the initial- and transition-state structures and not on the pathways between them. The volumes are calculated by enclosing the initial- and transition-state structures in a van der Waals' cocoon. Pressure is exerted by multiplying the van der Waals' radii by some factor without allowing the initial- and transition-state structures to relax. The influence of the surrounding solvent is included by using the extreme-pressure, polarizable-continuum method (XP-PCM). The approach is illustrated in detail using cyclopentadiene dimerization for which the rates have been independently measured by two groups. The analysis provides results that are in good agreement with those found experimentally for measurements made up to ∼0.3 GPa. The activation volumes of other D–A reactions are calculated in the same way and lead to good agreement for non-polar reactants, but less good agreement for polar ones. The pressure can also distort the initial- and transition-state structures, which can be calculated from the initial- and transition-state Hessians. A pressure-dependent distortion requires knowing the area over which the hydrostatic pressure acts. This is obtained using the Stearn–Eyring postulate that the activation volume is the product of an activation length and the area over which the stress acts. The activation length is obtained from quantum calculations of the difference in the distances between the diene and dienophile in the initial- and transition states. This provides only minor corrections to the results for routinely accessible hydrostatic pressures.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 4","pages":" 402-412"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00063c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanochemical extraction of edible proteins from moor grass† 从荒草中机械化提取可食用蛋白质†。
RSC Mechanochemistry Pub Date : 2024-07-16 DOI: 10.1039/D4MR00016A
Olusegun Abayomi Olalere, Fatma Guler, Christopher J. Chuck, Hannah S. Leese and Bernardo Castro-Dominguez
{"title":"Mechanochemical extraction of edible proteins from moor grass†","authors":"Olusegun Abayomi Olalere, Fatma Guler, Christopher J. Chuck, Hannah S. Leese and Bernardo Castro-Dominguez","doi":"10.1039/D4MR00016A","DOIUrl":"https://doi.org/10.1039/D4MR00016A","url":null,"abstract":"<p >Extracting edible nutrient-rich food fractions from unconventional sources, such as grass, could play a pivotal role in ensuring food security, bolstering economic prosperity, combating climate change, and enhancing overall quality of life. Current extraction techniques rely heavily on harsh chemicals, which not only degrade nutrients but can also substantially add to the cost of the process and make downstream separation challenging. In this study, we harnessed a mechanochemical process, liquid-assisted grinding (LAG) with and without Na<small><sub>2</sub></small>CO<small><sub>3</sub></small>, termed sodium carbonate assisted grinding (SAG), to extract the protein fraction from moor grass. These techniques were compared to the conventional alkaline extraction (AE) method. Unlike alkaline extraction, which solubilized over 70% of the material, the mechanochemical approach using Na<small><sub>2</sub></small>CO<small><sub>3</sub></small> solubilized only 55% of the grass while still extracting the vast majority of the protein in the original grass feedstock. The protein fractions obtained from the SAG process had a similar amino acid profile to the core feedstock but also contained distinct characteristics over the other methods of extraction. FT-IR analysis, for example, identified the presence of an amide III band in the protein fractions obtained from the SAG process, indicating unique structural features that contribute to improved dispersibility, gelation properties, and water-in-water stability. Furthermore, the extracted moor grass protein contained a higher proportion of glutamic acid in comparison to other amino acids in the protein, which indicates a savoury umami (meaty) characteristic to the protein fraction. The protein extracted <em>via</em> SAG also exhibited good heat stability (139–214 °C), rendering them potentially suitable for baking applications. Additionally, coupling Na<small><sub>2</sub></small>CO<small><sub>3</sub></small> with liquid assisted grinding not only removed the need for organic solvents and conventional heating but also reduced solvent consumption by 83%, compared with the typical alkaline extraction, thus simplifying the downstream processes necessary to produce food fractions. This study demonstrates the potential significance of mechanochemical extraction processes in unlocking nutrients from unconventional resources like grass, to produce the next generation of sustainable food ingredients.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 4","pages":" 375-385"},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00016a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing sustainable practices in Li-ion battery cathode material recycling: mechanochemical optimisation for magnetic cobalt recovery† 推进锂离子电池正极材料回收的可持续实践:磁性钴回收的机械化学优化†。
RSC Mechanochemistry Pub Date : 2024-07-15 DOI: 10.1039/D4MR00018H
Joshua Vauloup, Cécile Bouilhac, Nicolas Coppey, Patrick Lacroix-Desmazes, Bernard Fraisse, Lorenzo Stievano, Laure Monconduit and Moulay Tahar Sougrati
{"title":"Advancing sustainable practices in Li-ion battery cathode material recycling: mechanochemical optimisation for magnetic cobalt recovery†","authors":"Joshua Vauloup, Cécile Bouilhac, Nicolas Coppey, Patrick Lacroix-Desmazes, Bernard Fraisse, Lorenzo Stievano, Laure Monconduit and Moulay Tahar Sougrati","doi":"10.1039/D4MR00018H","DOIUrl":"https://doi.org/10.1039/D4MR00018H","url":null,"abstract":"<p >Lithium-ion batteries (LIBs) stand as the dominant power source for electric vehicles owing to their mature technology and exceptional performance. Consequently, metallic components of LIB cathode materials (Ni, Co, Li, and Mn) are assuming strategic significance. The imperative recycling of these metals has necessitated the development of novel technologies that can curtail secondary pollution arising from prevailing hydrometallurgical procedures, including issues such as wastewater generation and excessive energy and chemical consumption. In this study, we present an optimised mechanochemical process tailored for the magnetic recovery of cobalt from LiCoO<small><sub>2</sub></small>, which is a crucial component of LIBs. Our methodology involves the initial reduction of cobalt, facilitated by aluminium, followed by a selective extraction process that leverages the magnetic properties of the obtained species. A systematic exploration of milling parameters was undertaken to comprehensively understand their influence on chemical reactions and to improve reduction efficiency. This research represents a significant stride towards fostering sustainable practices in the realm of LIB cathode material recycling, addressing critical concerns related to resource management and environmental impact.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 4","pages":" 393-401"},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00018h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymer vessels in mechanochemical syntheses: assessing material performance† 机械化学合成中的聚合物容器:评估材料性能†。
RSC Mechanochemistry Pub Date : 2024-07-12 DOI: 10.1039/D4MR00059E
Marisol Fabienne Rappen, Lars Beissel, Jonathan Geisler, Simeon Theodor Tietmeyer, Sven Grätz and Lars Borchardt
{"title":"Polymer vessels in mechanochemical syntheses: assessing material performance†","authors":"Marisol Fabienne Rappen, Lars Beissel, Jonathan Geisler, Simeon Theodor Tietmeyer, Sven Grätz and Lars Borchardt","doi":"10.1039/D4MR00059E","DOIUrl":"https://doi.org/10.1039/D4MR00059E","url":null,"abstract":"<p >This work provides an overview of sixteen different polymers potentially applicable as vessel materials in mechanochemical reactions, facilitating the selection of the optimal material tailored to each system individually. The investigation focused on the chemical resistances, especially under simultaneous mechanical stress, and the long-term stability of the utilized polymers. To assess these aspects, two reference reactions were employed: the direct mechanocatalytic Suzuki coupling of iodobenzene and phenylboronic acid, and the acid-catalysed acetalization reaction of ethylene glycol and 3-nitrobenzaldehyde. The palladium abrasion of the precious milling ball material used in the Suzuki reaction was examined through ICP-OES measurements for the polymers studied. Additionally, the temperature resistance of the polymers was discussed, along with their aptitude for <em>in situ</em> monitoring.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 4","pages":" 386-392"},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00059e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信