Pressure as the driving force for mechanochemical reactions on the example of ion metathesis of alkali halides upon ball milling†

Wolfgang Schmidt, Pit Losch, Hilke Petersen, Martin Etter, Florian Baum, Jan Ternieden and Claudia Weidenthaler
{"title":"Pressure as the driving force for mechanochemical reactions on the example of ion metathesis of alkali halides upon ball milling†","authors":"Wolfgang Schmidt, Pit Losch, Hilke Petersen, Martin Etter, Florian Baum, Jan Ternieden and Claudia Weidenthaler","doi":"10.1039/D4MR00104D","DOIUrl":null,"url":null,"abstract":"<p >We report an <em>in situ</em> X-ray diffraction study of the mechanochemical ion metathesis between sodium iodide (NaI) and potassium chloride (KCl) to form sodium chloride (NaCl) and potassium iodide (KI) upon ball milling in a shaker mill. The data permit insights into the fundamental processes occurring during mechanochemistry. The reaction proceeds in incremental steps upon ball impact and consequently follows pseudo-zero order kinetics after an induction period needed for mixing and reduction of the sizes of the salt crystals. The total energy input required for full conversion is a constant value irrespective of the shaking frequency. Different shaking frequencies imply different average kinetic energies of the milling balls and thus different energy transfer per impact. The time for the total energy transfer to the powder thus varies as a function of the kinetic energy of the balls and number of impacts. At lower shaking frequency, <em>i.e.</em>, at lower kinetic energy of the balls and a lower impact rate, the time required for full conversion is simply longer. The data reported provide strong evidence that pressure generated by the impact of milling balls is the driving force for the metathesis reaction rather than a temperature increase. The observed pseudo-zero order kinetics complies well with periodic pressure pulses driving the salt metathesis reaction.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 2","pages":" 273-284"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00104d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Mechanochemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mr/d4mr00104d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We report an in situ X-ray diffraction study of the mechanochemical ion metathesis between sodium iodide (NaI) and potassium chloride (KCl) to form sodium chloride (NaCl) and potassium iodide (KI) upon ball milling in a shaker mill. The data permit insights into the fundamental processes occurring during mechanochemistry. The reaction proceeds in incremental steps upon ball impact and consequently follows pseudo-zero order kinetics after an induction period needed for mixing and reduction of the sizes of the salt crystals. The total energy input required for full conversion is a constant value irrespective of the shaking frequency. Different shaking frequencies imply different average kinetic energies of the milling balls and thus different energy transfer per impact. The time for the total energy transfer to the powder thus varies as a function of the kinetic energy of the balls and number of impacts. At lower shaking frequency, i.e., at lower kinetic energy of the balls and a lower impact rate, the time required for full conversion is simply longer. The data reported provide strong evidence that pressure generated by the impact of milling balls is the driving force for the metathesis reaction rather than a temperature increase. The observed pseudo-zero order kinetics complies well with periodic pressure pulses driving the salt metathesis reaction.

Abstract Image

压力作为机械化学反应的驱动力——以球磨碱卤化物离子分解为例
本文报道了一种原位x射线衍射研究碘化钠(NaI)和氯化钾(KCl)在振动筛球磨机中形成氯化钠(NaCl)和碘化钾(KI)的机械化学离子转化过程。这些数据使我们能够深入了解机械化学过程中发生的基本过程。反应在球撞击后以增量的步骤进行,因此在混合和减小盐晶体尺寸所需的诱导期后遵循伪零级动力学。完全转换所需的总能量输入是一个恒定值,与振动频率无关。不同的振动频率意味着磨球的平均动能不同,因此每次冲击传递的能量也不同。因此,总能量转移到粉末的时间随球的动能和撞击次数的变化而变化。在较低的振动频率下,即在较低的球动能和较低的冲击速率下,完全转换所需的时间更长。报告的数据提供了强有力的证据,证明由磨球冲击产生的压力是复分解反应的驱动力,而不是温度升高。观察到的伪零级动力学与驱动盐分解反应的周期压力脉冲很好地吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信