Ayuko Kitajou, Shohei Matsuda, Koji Ohara, Kazutaka Ikeda and Shunsuke Muto
{"title":"Cathode properties of a controlled crystallinity nano-Li1.2Cr0.4Mn0.4O2 cathode for lithium ion batteries†","authors":"Ayuko Kitajou, Shohei Matsuda, Koji Ohara, Kazutaka Ikeda and Shunsuke Muto","doi":"10.1039/D4MR00051J","DOIUrl":null,"url":null,"abstract":"<p >The milled-Li<small><sub>1.2</sub></small>Cr<small><sub>0.4</sub></small>Mn<small><sub>0.4</sub></small>O<small><sub>2</sub></small> (milled-LCMO) cathode, a promising material for next-generation Li ion batteries, is prepared by dry ball-milling of layered rocksalt-type Li<small><sub>1.2</sub></small>Cr<small><sub>0.4</sub></small>Mn<small><sub>0.4</sub></small>O<small><sub>2</sub></small> (layered-LCMO) obtained by solid-state synthesis. Despite undergoing ball-milling treatment, resulting in separation into Cr-rich and Mn-rich phases along with Li<small><sub>2</sub></small>O, milled-LCMO still exhibited a reversible capacity of 277 mA h g<small><sup>−1</sup></small> at a rate of 16 mA g<small><sup>−1</sup></small>. However, it was also revealed that its cyclability was poor due to the contribution of oxygen redox in the charging process. On the other hand, layered-LCMO exhibited better cyclability because charge and discharge reactions proceeded only through the Cr redox. The thermally treated Li<small><sub>1.2</sub></small>Cr<small><sub>0.4</sub></small>Mn<small><sub>0.4</sub></small>O<small><sub>2</sub></small> was prepared as a cathode material that combines the favorable properties of these two materials. In fact, each thermally treated sample showed a larger reversible capacity than the layered-LCMO obtained by the solid-phase method, and the cyclability recovered as the heat treatment temperature increased.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 1","pages":" 54-60"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00051j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Mechanochemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mr/d4mr00051j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The milled-Li1.2Cr0.4Mn0.4O2 (milled-LCMO) cathode, a promising material for next-generation Li ion batteries, is prepared by dry ball-milling of layered rocksalt-type Li1.2Cr0.4Mn0.4O2 (layered-LCMO) obtained by solid-state synthesis. Despite undergoing ball-milling treatment, resulting in separation into Cr-rich and Mn-rich phases along with Li2O, milled-LCMO still exhibited a reversible capacity of 277 mA h g−1 at a rate of 16 mA g−1. However, it was also revealed that its cyclability was poor due to the contribution of oxygen redox in the charging process. On the other hand, layered-LCMO exhibited better cyclability because charge and discharge reactions proceeded only through the Cr redox. The thermally treated Li1.2Cr0.4Mn0.4O2 was prepared as a cathode material that combines the favorable properties of these two materials. In fact, each thermally treated sample showed a larger reversible capacity than the layered-LCMO obtained by the solid-phase method, and the cyclability recovered as the heat treatment temperature increased.
将固态合成的层状岩盐型Li1.2Cr0.4Mn0.4O2(层状lcmo)用干球磨法制备了具有广阔前景的下一代锂离子电池正极材料——磨态Li1.2Cr0.4Mn0.4O2 (miled - lcmo)。尽管经过球磨处理,使其与Li2O分离为富cr相和富mn相,但磨后的lcmo仍具有277 mA h g−1的可逆容量,速率为16 mA g−1。然而,由于充电过程中氧氧化还原的影响,其可循环性较差。另一方面,层状lcmo表现出更好的循环性,因为充放电反应仅通过Cr氧化还原进行。将热处理后的Li1.2Cr0.4Mn0.4O2作为正极材料,结合了这两种材料的优良性能。事实上,每个热处理样品都比固相法得到的分层lcmo表现出更大的可逆容量,并且随着热处理温度的升高,循环性恢复。