Procedia Technology最新文献

筛选
英文 中文
Mucin 4 Immunosensor Based on p-aminophenylacetic Acid Grafting on Carbon Electrodes as Immobilization Platform 基于对氨基苯基乙酸接枝碳电极作为固定平台的粘蛋白4免疫传感器
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/j.protcy.2017.04.048
Oana Hosu, Mihaela Tertiş, Gheorghe Melinte, Robert Săndulescu, Cecilia Cristea
{"title":"Mucin 4 Immunosensor Based on p-aminophenylacetic Acid Grafting on Carbon Electrodes as Immobilization Platform","authors":"Oana Hosu,&nbsp;Mihaela Tertiş,&nbsp;Gheorghe Melinte,&nbsp;Robert Săndulescu,&nbsp;Cecilia Cristea","doi":"10.1016/j.protcy.2017.04.048","DOIUrl":"10.1016/j.protcy.2017.04.048","url":null,"abstract":"<div><p>A simple impedimetric label-free immunosensor was developed for the specific and sensitive detection of mucin 4 (MUC 4) protein by using graphite based screen printed electrodes modified with an aryl diazonium salt or compound (<em>p</em>- aminophenylacetic acid) for the immobilization of antibody anti-MUC4 via amidic bond. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used in order to characterize and optimize the electrografting process. The parameters involved in each step of the immunosensor design were optimized. The performance of the immunoassay in terms of sensitivity, reproducibility and selectivity was studied.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":"27 ","pages":"Pages 110-111"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.048","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89168197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Advanced Electrochemical Scaffolds for Multiplexed Biosensing of Cancer Reporters in Complex Clinical Samples 用于复杂临床样品中癌症报告者多重生物传感的先进电化学支架
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/j.protcy.2017.04.010
Rebeca M. Torrente-Rodríguez , Susana Campuzano , Víctor Ruiz-Valdepeñas Montiel , Unai Eletxigerra , Josu Martinez-Perdiguero , Santos Merino , Rodrigo Barderas , Reynaldo Villalonga , José M. Pingarrón
{"title":"Advanced Electrochemical Scaffolds for Multiplexed Biosensing of Cancer Reporters in Complex Clinical Samples","authors":"Rebeca M. Torrente-Rodríguez ,&nbsp;Susana Campuzano ,&nbsp;Víctor Ruiz-Valdepeñas Montiel ,&nbsp;Unai Eletxigerra ,&nbsp;Josu Martinez-Perdiguero ,&nbsp;Santos Merino ,&nbsp;Rodrigo Barderas ,&nbsp;Reynaldo Villalonga ,&nbsp;José M. Pingarrón","doi":"10.1016/j.protcy.2017.04.010","DOIUrl":"10.1016/j.protcy.2017.04.010","url":null,"abstract":"<div><p>Early and reliable diagnostic of cancer is mandatory to increase patient survival, thus requiring efficient and reliable analytical methods for such a purpose. Within this context, different strategies implying the development of electrochemical biosensors for the sensitive, selective and rapid multiplexed biosensing of genetic or protein cancer-related biomarkers are addressed in this presentation. In particular, novel sensing platforms have been developed for the determination of miRs, interleukin (IL)-8 mRNA, IL-8 protein, and cancer specific receptors. The developed methodologies allow for the determination of the target analytes at clinically relevant levels in complex samples: cancer cells, human tissues cell lysates, serum and raw saliva and can be easily extended to the determination of other relevant biomarkers.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":"27 ","pages":"Pages 17-20"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87924915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid Prototyping of a Low-cost Graphene-based Impedimetric Biosensor 低成本石墨烯阻抗生物传感器的快速原型设计
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/J.PROTCY.2017.04.116
S. Popescu, C. Dale, N. Keegan, B. Ghosh, R. Kaner, J. Hedley
{"title":"Rapid Prototyping of a Low-cost Graphene-based Impedimetric Biosensor","authors":"S. Popescu, C. Dale, N. Keegan, B. Ghosh, R. Kaner, J. Hedley","doi":"10.1016/J.PROTCY.2017.04.116","DOIUrl":"https://doi.org/10.1016/J.PROTCY.2017.04.116","url":null,"abstract":"","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":"46 1","pages":"274-276"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90765416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Novel QCM-based Method to Predict in Vivo Behaviour of Nanoparticles 基于qcm的纳米颗粒体内行为预测新方法
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/j.protcy.2017.04.084
M. Gianneli , Y. Yan , E. Polo , D. Peiris , T. Aastrup , K.A. Dawson
{"title":"Novel QCM-based Method to Predict in Vivo Behaviour of Nanoparticles","authors":"M. Gianneli ,&nbsp;Y. Yan ,&nbsp;E. Polo ,&nbsp;D. Peiris ,&nbsp;T. Aastrup ,&nbsp;K.A. Dawson","doi":"10.1016/j.protcy.2017.04.084","DOIUrl":"10.1016/j.protcy.2017.04.084","url":null,"abstract":"<div><p>In biological fluids, proteins and other biomolecules bind to the surface of nanoparticles to form a coating known as the protein corona which in turn becomes primary determinant of the nanoparticles’ fate and behaviour. Here we develop a QCM-based platform and methodology to obtain data from real-time interactions of nanoparticles with selected human plasma proteins. Polystyrene particles coated with transferrin are immobilized on QCM sensor chips and by means of a ‘sandwich’ format binding assay, specific epitopes on the particles can be quantified as measured by the increase of the sensor's resonant frequency. Cell binding experiments where adherent cells are directly grown on the sensor surface are also performed. Interaction of nanoparticles injected over the cell surface is observed only in the case of particle-transferrin complexes demonstrating that it is the nanoparticle-corona complex, rather than the native nanoparticle, “what the cell sees”, with the corona being the interface between the nanoparticle and the cellular system. Our data highlight the potential of the proposed QCM-based platform and methodology for characterization of the bio-nano-interface and tracking the interaction of nanoparticles with biological cells in the presence of a realistic milieu.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":"27 ","pages":"Pages 197-200"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.084","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87615176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Functionalization of Gold-plasmonic Devices for Protein Capture 用于蛋白质捕获的金等离子体器件的功能化
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/j.protcy.2017.04.071
E. Battista , P.L. Scognamiglio , G. Das , G. Manzo , F. Causa , E. Di Fabrizio , P.A. Netti
{"title":"Functionalization of Gold-plasmonic Devices for Protein Capture","authors":"E. Battista ,&nbsp;P.L. Scognamiglio ,&nbsp;G. Das ,&nbsp;G. Manzo ,&nbsp;F. Causa ,&nbsp;E. Di Fabrizio ,&nbsp;P.A. Netti","doi":"10.1016/j.protcy.2017.04.071","DOIUrl":"10.1016/j.protcy.2017.04.071","url":null,"abstract":"<div><p>Here we propose a straightforward method to functionalize gold nanostructures by using an appropriate peptide sequence already selected toward gold surfaces and derivatized with another sequence for the capture of a molecular target. Large scale 3D-plasmonic devices with different nanostructures were fabricated by means of direct nanoimprint technique. The present work is aimed to address different innovative aspects related to the fabrication of large-area 3D plasmonic arrays, their direct and easy functionalization with capture elements, and their spectroscopic verifications through enhanced Raman and enhanced fluorescence techniques.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":"27 ","pages":"Pages 163-164"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.071","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90176084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Rapid Molecular Diagnosis of Bacterial Infection Using Integrated Lab-on-a-disc 应用集成盘上实验室快速分子诊断细菌感染
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/j.protcy.2017.04.094
J. Loo , C.C.H. Leung , H.C. Kwok , S.Y. Wu , I.L.G. Law , M.L. Chin , M. Hui , S.K. Kong , H.P. Ho
{"title":"Rapid Molecular Diagnosis of Bacterial Infection Using Integrated Lab-on-a-disc","authors":"J. Loo ,&nbsp;C.C.H. Leung ,&nbsp;H.C. Kwok ,&nbsp;S.Y. Wu ,&nbsp;I.L.G. Law ,&nbsp;M.L. Chin ,&nbsp;M. Hui ,&nbsp;S.K. Kong ,&nbsp;H.P. Ho","doi":"10.1016/j.protcy.2017.04.094","DOIUrl":"10.1016/j.protcy.2017.04.094","url":null,"abstract":"<div><p>Bacterial infection is a disaster leading to high fatal rate in intensive caring unit. Rapid profiling of infectious bacteria is necessary for applying the correct medication. Current gold standard using plate inoculation is inaccurate, time-consuming and labour-intensive. Therefore we have developed a molecular diagnostic approach to target marker DNA of the infectious bacteria for rapid profiling. A micro-fluidic platform lab-on-a-disc (LOAD) has been adopted because using one simple spinning action can provide highly controllable centrifugation drive force for the actuation of samples and reagents anywhere within the boundary of the disc. When centrifugal force-triggered valve is applied, complex sequential flow of liquid can be controlled with various centrifugal force. This will enable parallel execution of many reactions simultaneously with minimal complexity in the design of fluidic pumping and flow control.</p><p>We report an integrated LOAD for direct sample-to-answer applications - fully automated assay from patient's sample input to detection of signal output. The integrated LOAD with PDMS-made microfludic disc performs three major functions, namely DNA extraction, LAMP reaction and detection. Using microfluidics technology, target bacteria can be detected using as little as 10 μL blood sample loaded into sample loading site. The DNA release after cell lysis in heating site is bound on the silica membrane. After washing, the purified DNA elution is subjected to LAMP reaction to amplify the target genetic sequence. Loop-mediated isothermal amplification (LAMP) is an isothermal nucleic acid amplification method where reaction occurs under 65 <sup>o</sup>C. The amplified signal is reported by DNA binding fluorescent dye. Our prototype shows high yield and purity of bacterial DNA from clinical samples such as blood. We demonstrated the detection of <em>Acinetobacter baumanii</em>, which is one of the key pathogens resulting in hospital-acquired infections, in clinical blood sample using the LOAD platform. Fast signal detection and active temperature control within the LOAD platform has also enabled real-time LAMP targeting of specific DNA sequences as barcodes to identify infected bacterial species. We found the detection sensitivity of LAMP using DNA is 10<sup>-15</sup> g, while that of bacteria concentration is 10<sup>2</sup> cfu/ml. The system is capable of providing bacterial DNA profiling within 2 hours.</p><p>In conclusion, our integrated LOAD is a simple (sample-to-answer), specific (specific genetic sequences recognition), robust (automated assay on microfluidic disc) method for rapid molecular diagnosis of bacterial infection. The short turnaround time and the technical advancement of sample-to-answer in one LOAD platform approach for rapid bacterial detection should have much potential in addressing the needs of point-of-care medical diagnosis applications. The simplicity allows the clinical healthcare workers to utilize ","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":"27 ","pages":"Pages 224-225"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.094","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90203039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Modification of Gold Electrodes with Bacterial Reaction Centres Immobilized by Laser Induced Forward Transfer (LIFT) Technique for Amperometric Herbicide Detection 激光诱导正向转移固定化细菌反应中心修饰金电极用于除草剂安培检测
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/j.protcy.2017.04.083
M.R. Guascito , M. Chatzipetrou , D. Chirizzi , M. Trotta , M. Massaouti , L. Giotta , F. Milano , I. Zergioti
{"title":"Modification of Gold Electrodes with Bacterial Reaction Centres Immobilized by Laser Induced Forward Transfer (LIFT) Technique for Amperometric Herbicide Detection","authors":"M.R. Guascito ,&nbsp;M. Chatzipetrou ,&nbsp;D. Chirizzi ,&nbsp;M. Trotta ,&nbsp;M. Massaouti ,&nbsp;L. Giotta ,&nbsp;F. Milano ,&nbsp;I. Zergioti","doi":"10.1016/j.protcy.2017.04.083","DOIUrl":"10.1016/j.protcy.2017.04.083","url":null,"abstract":"<div><p>The functionalization of screen-printed electrodes (SPEs) with a thin film of reaction centre (RC) proteins from the phototrophic bacterium <em>Rhodobacter (R.) sphaeroides</em>, by means of laser induced forward transfer (LIFT) technique, allowed the fabrication of robust and sensitive bio-hybrid devices for terbutryn detection and analysis. The optimal wiring between RCs and the gold electrode surface, achieved by LIFT, led to the generation of cathodic photocurrents sustained by a direct electron transfer (DET) mechanism, which were attenuated by addition of the herbicide inhibitor.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":"27 ","pages":"Pages 195-196"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.083","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89132798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical Protein Cleavage in a Microfluidic Cell for Proteomics Studies 在微流控细胞中进行蛋白质组学研究的电化学蛋白质切割
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/j.protcy.2017.04.029
Floris T.G. van den Brink , Tao Zhang , Liwei Ma , Mathieu Odijk , Wouter Olthuis , Hjalmar P. Permentier , Rainer P.H. Bischoff , Albert van den Berg
{"title":"Electrochemical Protein Cleavage in a Microfluidic Cell for Proteomics Studies","authors":"Floris T.G. van den Brink ,&nbsp;Tao Zhang ,&nbsp;Liwei Ma ,&nbsp;Mathieu Odijk ,&nbsp;Wouter Olthuis ,&nbsp;Hjalmar P. Permentier ,&nbsp;Rainer P.H. Bischoff ,&nbsp;Albert van den Berg","doi":"10.1016/j.protcy.2017.04.029","DOIUrl":"10.1016/j.protcy.2017.04.029","url":null,"abstract":"<div><p>Electrochemical protein digestion prior to mass spectrometric analysis is a purely instrumental approach to protein identification, offering reduced consumption of chemicals and shorter analysis times compared to the use of enzymes and chemical cleavage agents. Here we demonstrate the possibilities of site-specific peptide bond cleavage and disulphide bond reduction in a microfluidic electrochemical cell. The use of microfluidics in this context is beneficial for increased electrochemical cleavage yields, small sample volumes and the possibility of rapid on-line analysis, thereby providing a versatile tool for routine proteomics studies.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":"27 ","pages":"Pages 62-64"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77296025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Pin-based Enzymatic Electrochemical Sensing 基于引脚的酶电化学传感
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/j.protcy.2017.04.042
E. Costa Rama, A. Costa García, M.T. Fernández-Abedul
{"title":"Pin-based Enzymatic Electrochemical Sensing","authors":"E. Costa Rama,&nbsp;A. Costa García,&nbsp;M.T. Fernández-Abedul","doi":"10.1016/j.protcy.2017.04.042","DOIUrl":"10.1016/j.protcy.2017.04.042","url":null,"abstract":"<div><p>Already mass-produced stainless-steel pins offer the possibility of developing low-cost electroanalytical devices with a versatile disposition of the electrodes. Here we use these prefabricated pins as electrodes for enzymatic amperometric sensing. A conventional three-electrode configuration device is designed using two bare pins as reference and counter electrodes, and a carbon-coated pin as working electrode. Using a transparency sheet and standard connections as interface to conventional instrumentation, a pin-based sensor for glucose determination is developed. Finally, a multiplexed device with four pins acting as working electrodes, which can be useful for multiplexed immunosensing purposes, is designed.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":"27 ","pages":"Pages 98-99"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75476005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plastic Optical Fiber with Sol-gel Film for pH Detection 塑料光纤溶胶-凝胶膜pH检测
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/J.PROTCY.2017.04.115
D. Razo-Medina, E. Alvarado-Mendez, M. Trejo-Durán
{"title":"Plastic Optical Fiber with Sol-gel Film for pH Detection","authors":"D. Razo-Medina, E. Alvarado-Mendez, M. Trejo-Durán","doi":"10.1016/J.PROTCY.2017.04.115","DOIUrl":"https://doi.org/10.1016/J.PROTCY.2017.04.115","url":null,"abstract":"","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":"28 1","pages":"271-273"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86139361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信