E. Costa Rama, A. Costa García, M.T. Fernández-Abedul
{"title":"Pin-based Enzymatic Electrochemical Sensing","authors":"E. Costa Rama, A. Costa García, M.T. Fernández-Abedul","doi":"10.1016/j.protcy.2017.04.042","DOIUrl":null,"url":null,"abstract":"<div><p>Already mass-produced stainless-steel pins offer the possibility of developing low-cost electroanalytical devices with a versatile disposition of the electrodes. Here we use these prefabricated pins as electrodes for enzymatic amperometric sensing. A conventional three-electrode configuration device is designed using two bare pins as reference and counter electrodes, and a carbon-coated pin as working electrode. Using a transparency sheet and standard connections as interface to conventional instrumentation, a pin-based sensor for glucose determination is developed. Finally, a multiplexed device with four pins acting as working electrodes, which can be useful for multiplexed immunosensing purposes, is designed.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212017317300439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Already mass-produced stainless-steel pins offer the possibility of developing low-cost electroanalytical devices with a versatile disposition of the electrodes. Here we use these prefabricated pins as electrodes for enzymatic amperometric sensing. A conventional three-electrode configuration device is designed using two bare pins as reference and counter electrodes, and a carbon-coated pin as working electrode. Using a transparency sheet and standard connections as interface to conventional instrumentation, a pin-based sensor for glucose determination is developed. Finally, a multiplexed device with four pins acting as working electrodes, which can be useful for multiplexed immunosensing purposes, is designed.