Next Sustainability最新文献

筛选
英文 中文
Recycle sludge incineration ash for efficient preparation of foam concrete: Performance, microstructure, and mechanisms 回收污泥焚烧灰高效制备泡沫混凝土:性能、微观结构和机理
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2025.100125
Huang Xuquan , Yuhao , Wang Haojie , Xie Xiuqing , Qi Chunbiao , Xue Fei , Zhao Xiaorong
{"title":"Recycle sludge incineration ash for efficient preparation of foam concrete: Performance, microstructure, and mechanisms","authors":"Huang Xuquan ,&nbsp;Yuhao ,&nbsp;Wang Haojie ,&nbsp;Xie Xiuqing ,&nbsp;Qi Chunbiao ,&nbsp;Xue Fei ,&nbsp;Zhao Xiaorong","doi":"10.1016/j.nxsust.2025.100125","DOIUrl":"10.1016/j.nxsust.2025.100125","url":null,"abstract":"<div><div>In this paper, the performance of producing foamed concrete by sludge incineration ash(SIA), blast furnace slag(BS) and Portland cement(PO) was investigated. The mixture design in Minitab software was employed to conduct three-component experimental design for SIA, BS and PO and to optimize and determine the optimal component ratio. The influence of two admixtures on the compressive strength and dry density of foamed concrete at different ages was explored. The hardening mechanism of foamed concrete was analyzed by XRD and SEM. With the amount of reactant as the variable, the compressive strength of foam concrete was the expected response. The results of Minitab software showed that the regression coefficient between the variable and the response was very high. The R-sq value of the 7-day compressive strength was 95.03 %, and the 28-day compressive strength was 96.34 % (where R-sq represents the accuracy of the model data fitting; the closer to 100 %, the higher the fitting accuracy). The difference between the measured values and the fitting value was small, indicating that the fitting model performed well. The optimal mix ratio was 30.87 % SIA, 28.65 % BS and 40.48 % PO. Under this condition, the maximum compressive strength of foam concrete were 3.60 MPa (7d) and 9.53 MPa (28d), with corresponding dry densities of 1235 kg/m³ and 1252 kg/m³ . Sludge incineration ash exhibits pozzolanic activity. The reactive SiO<sub>2</sub> and active Fe<sub>2</sub>O<sub>3</sub> contained in it can undergo hydration reactions with cement at room temperature, generating C-S-H gel and insoluble AFt phases. These substances interlocked with each other, forming a dense microstructure that provided early strength to the foam concrete. Considering the effect of admixtures on the performance of foamed concrete, the experimental data demonstrated that the addition of polycarboxylic superplasticizer and sodium sulfate-based early strength agent significantly improved the mechanical properties of foamed concrete.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100125"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143681504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An exergy-based analysis for the synthesis of aromatics from biomass 生物质合成芳烃的火用分析
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2025.100109
Mohammed Usman , Joseph Akintola , Gabriel Umoh , Joseph Akpan , Ekpotu Wilson , Queen Moses , Philemon Udom , Edose Osagie
{"title":"An exergy-based analysis for the synthesis of aromatics from biomass","authors":"Mohammed Usman ,&nbsp;Joseph Akintola ,&nbsp;Gabriel Umoh ,&nbsp;Joseph Akpan ,&nbsp;Ekpotu Wilson ,&nbsp;Queen Moses ,&nbsp;Philemon Udom ,&nbsp;Edose Osagie","doi":"10.1016/j.nxsust.2025.100109","DOIUrl":"10.1016/j.nxsust.2025.100109","url":null,"abstract":"<div><div>The chemical process industry has been facing rising energy costs, increasing competition due to rapid globalization, and more stringent government regulations amid growing public concern for the environment, health, and safety. In response to these challenges and considering the industry's capital-intensive nature, ongoing optimization through redesigning existing production plants has become a key strategy. This study designs and analyses a typical process plant with two routes for synthesizing aromatics from methanol and pentane. Process route 1 involves co-feeding, while process route 2 incorporates recycling and producing pentane. For methanol synthesis, cellulose (biomass) is used as the initial raw material, leading to the synthesis of aromatics through a reaction with pentanes. Exergy, exergo-economic, and pinch analyses are performed on both process routes. The routes display different overall exergy performances, with process routes 1 and 2 achieving 39.53 % and 25.43 % exergy, respectively. The highest exergetic performance is recorded in the CO<sub>2</sub> heater (67.69 %) and the biomass oxidation reactor (88.70 %) for process routes 1 and 2, respectively. Exergo-economic evaluations indicate that Benzene distillation separation experiences exergy destruction rates of 28.61 % and exergo-economic factor of 99.92 % for process 1, while the aromatics heater shows the highest exergy destruction of 56.68 % for process 2. Implementing heat integration in the process routes reveals that process route 1 achieves energy savings of 92.09 %, while process route 2 results in 51.38 % energy savings. This study demonstrates the two process routes’ long-term economic viability and efficiency, which can be further optimised in future studies to achieve sustainable process implementation.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100109"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143228671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disruptive technologies that deliver a circular economy for plastics 颠覆性技术为塑料带来循环经济
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2025.100098
Katherine E.S. Locock , Andrew Terhorst , Sarah King , Kymberley R. Scroggie
{"title":"Disruptive technologies that deliver a circular economy for plastics","authors":"Katherine E.S. Locock ,&nbsp;Andrew Terhorst ,&nbsp;Sarah King ,&nbsp;Kymberley R. Scroggie","doi":"10.1016/j.nxsust.2025.100098","DOIUrl":"10.1016/j.nxsust.2025.100098","url":null,"abstract":"<div><div>Plastics are ubiquitous and integral to modern life with global production doubling in the next 20 years. Only minimal amounts, however, are reused or recycled with the common methods of dealing with plastic waste i.e., incineration and landfill, and leaking into the environment (pollution) all resulting in a loss of plastic from the economy. A circular economy for plastics reduces plastic pollution and climate effects and provides social and economic benefits. This article reviews the patent landscape and identifies disruptive technologies that contribute to a circular economy for plastics. Using a collaboration between subject matter experts and ChatGPT, we identified five distinct disruptive technology categories and associated keywords that support a circular economy: bioplastics, chemical recycling, synthetic biology, traceable plastics and waste separation. Using the associated keywords, we categorised patents from 2018 to 2022 into these disruptive technologies to assess current trends. The patent landscape was challenging to navigate due to the deliberately broad language used to construct patents, leading to many irrelevant patents being categorised. Low technology readiness levels of some patents examined also limits the current disruptiveness of these technologies. Adequate financial funding and economic incentives were the most evident barriers to disruptive technology maturity and uptake.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100098"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable recycling and characterization of end-of-life solid oxide cell ceramic component materials 寿命终止固体氧化物电池陶瓷组件材料的可扩展回收和表征
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2025.100110
Gudaysew Tsegaye Yenesew, Clément Nicollet, Eric Quarez, Annie Le Gal La Salle, Olivier Joubert
{"title":"Scalable recycling and characterization of end-of-life solid oxide cell ceramic component materials","authors":"Gudaysew Tsegaye Yenesew,&nbsp;Clément Nicollet,&nbsp;Eric Quarez,&nbsp;Annie Le Gal La Salle,&nbsp;Olivier Joubert","doi":"10.1016/j.nxsust.2025.100110","DOIUrl":"10.1016/j.nxsust.2025.100110","url":null,"abstract":"<div><div>By recycling solid oxide cells (SOCs) end-life materials, the environmental impact can be reduced, and the materials' closed-loop life cycle can help preserve natural resources and create a sustainable and circular system. This study presents a technique for recovering NiO, La<sub>x</sub>Sr<sub>1-x</sub>CoO<sub>3</sub> (LSC) and Zr<sub>1-x</sub>Y<sub>x</sub>O<sub>2-x/2</sub> (YSZ) components from SOC end-of-life products. First, the entire cell components, including the electrolyte, fuel and air electrodes were crushed, ball-milled, and leached with nitric acid. Following the maximum dissolution of cations, centrifugation was used to remove the non-leached YSZ as a sediment. The leached solution, which is rich in nickel, cobalt, strontium, and lanthanum ions was treated with dimethylglyoxime (C<sub>4</sub>H<sub>8</sub>N<sub>2</sub>O<sub>2</sub> DMG) and Ni is preferentially precipitated as C<sub>8</sub>H<sub>14</sub>N<sub>4</sub>NiO<sub>4</sub>. LSC is then recovered from thermal treatment of solution leftover from C<sub>8</sub>H<sub>14</sub>N<sub>4</sub>NiO<sub>4</sub> centrifugation and filtration. About 90 wt% of the ceramic components were successfully recovered. The compositions of recovered materials show a commercial-grade purity i.e about 99 at% for NiO, 96 at% for LSC and 97 at% for YSZ.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100110"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomass (Amritsagar) derived efficient solid base catalyst for eco-friendly biodiesel synthesis: A study on synthesis, reaction kinetics, and thermodynamic properties 生物质(Amritsagar)衍生高效固体碱催化剂用于生态友好型生物柴油的合成、反应动力学和热力学性质研究
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2025.100127
Bidangshri Basumatary , Biswajit Nath , Bipul Das , Anjana Dhar , Sanjay Basumatary
{"title":"Biomass (Amritsagar) derived efficient solid base catalyst for eco-friendly biodiesel synthesis: A study on synthesis, reaction kinetics, and thermodynamic properties","authors":"Bidangshri Basumatary ,&nbsp;Biswajit Nath ,&nbsp;Bipul Das ,&nbsp;Anjana Dhar ,&nbsp;Sanjay Basumatary","doi":"10.1016/j.nxsust.2025.100127","DOIUrl":"10.1016/j.nxsust.2025.100127","url":null,"abstract":"<div><div>This study examines the effectiveness of a heterogeneous catalyst derived from the Amritsagar (AAA) banana plant in the synthesis of biodiesel using <em>Jatropha curcas</em> oil. The fruit peel, rhizome, and stem of the post-harvest Amritsagar (AAA) plant were calcined at 550°C and utilized as catalysts for transesterification. The catalysts are characterized using advanced analytical instruments and techniques such as FESEM, HRTEM, EDX, FT-IR, XPS, XRD, and BET. The most effective catalyst identified in this work is the Amritsagar calcined peel catalyst at 550 °C (ACP-550). Its characterization confirms the existence of Ca, K, Si, Fe, Na, Sr, Mn, Mg, and Zn metal oxides and carbonates, and it reveals a BET surface area of 26.104 m²/g. The catalyst ACP-550 outperformed the other catalysts, delivering a biodiesel yield of 97.58 % at 65 °C under optimal conditions, which comprised a 9:1 methanol to oil molar ratio, 7 wt% catalyst, and a 20 min reaction time. The study also includes an investigation of basicity, turnover frequency, soluble alkalinity, pH measurement of catalysts, reaction kinetics, thermodynamic parameters, reusability tests, and a comparison of catalytic activity of the catalysts in the production of biodiesel. The synthesized biodiesel was characterized through GC-MS NMR, and FT-IR analysis. Moreover, the assessment of fuel characteristics of biodiesel obtained from <em>Jatropha curcas</em> oil (JCO) was documented and compared with international standards and the properties were found to be within the specified limits.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100127"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143705374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamic and kinetic analysis of waste plastic pyrolysis: Synergistic effects and sustainability perspectives 废塑料热解的热力学和动力学分析:协同效应和可持续性观点
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2025.100132
Prathwiraj Meena, Rohidas Bhoi
{"title":"Thermodynamic and kinetic analysis of waste plastic pyrolysis: Synergistic effects and sustainability perspectives","authors":"Prathwiraj Meena,&nbsp;Rohidas Bhoi","doi":"10.1016/j.nxsust.2025.100132","DOIUrl":"10.1016/j.nxsust.2025.100132","url":null,"abstract":"<div><div>In this study, low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), waste mixed plastics (WMPs) and WMPs with spent fluid catalytic cracking (sFCC) catalyst (WMPs/ sFCC) were investigated to simulate real-life pyrolysis and catalytic pyrolysis of waste plastics using Thermogravimetric analysis (TGA). TGA was performed under different heating rates i.e., 5, 10, 15 and 20 ˚C/min) in an inert nitrogen atmosphere. The pyrolysis kinetics are assessed using three model-free methods, Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS), and Starink, as well as two model-fitting methods, Coats–Redfern (CR) and Criado methods (master plots). The results showed that the WMPs exhibited a positive synergetic effect among the different types of plastics, leading to a notable reduction in degradation temperature and required activation energy. Moreover, adding sFCC catalysts significantly lowered the initial pyrolysis temperature (approximately 47 ˚C) of WMPs compared to direct pyrolysis. Moreover, the average activation energy of WMPs decreased by approximately 13.41 kJ/mole with the inclusion of the sFCC catalyst. The thermodynamic properties such <em>ΔH</em><sup><em>‡</em></sup>, <em>ΔG</em><sup><em>‡</em></sup> and <em>ΔS</em><sup><em>‡</em></sup> suggested that the process was endothermic, non-spontaneous and decreased in randomness during pyrolysis. This study promotes sustainability through a circular economy to convert waste into wealth. These findings offer valuable theoretical insights for reducing energy consumption in plastic pyrolysis and expanding the applications of sFCC catalyst.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100132"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143859242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of bioethanol production from sorghum residue by optimization of pre-treatment and enzymatic degradation: Co-culturing of Saccharomyces cerevisiae and Pichia stipitis as fermentation approach 高粱渣预处理及酶解工艺优化生产生物乙醇的研究:酿酒酵母与毕赤酵母共培养发酵方法
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2025.100131
Pallavi Punia, Sumeet Kumar
{"title":"Study of bioethanol production from sorghum residue by optimization of pre-treatment and enzymatic degradation: Co-culturing of Saccharomyces cerevisiae and Pichia stipitis as fermentation approach","authors":"Pallavi Punia,&nbsp;Sumeet Kumar","doi":"10.1016/j.nxsust.2025.100131","DOIUrl":"10.1016/j.nxsust.2025.100131","url":null,"abstract":"<div><div>The co-utilization of pentose and hexose in lignocellulosic biomass hydrolysate is the core for economically fermentative production of the second-generation bioethanol as a sustainable biofuel candidate. In this research, the production of bioethanol by co-culturing <em>S. cerevisiae</em> (MTCC174) and <em>P. stipitis</em> (NCIM 3497) with the SHF (separate hydrolysis and fermentation) process was reported. Enzymatic the saccharification process for fermentable sugars is induced by NaOH pre-treated SSR, as evidenced by the data. The optimal Box-Behnken Design parameters for pre-treated and hydrolyzed SSR were reported with 2 % concentration of NaOH, 1 mm with particle size, and 50 min duration were explored and showed a maximum cellulose concentration of 62.7 % as a response. The variables investigated in the model for hydrolysis found the maximal concentration of reducing sugar of 42.7 ± 2.117 mg/g, at ∼50℃ with 1:2 enzymes loading at a time of ∼72hrs. The physical and structural analysis can be done with FTIR, XRD, and FESEM techniques. The highest concentration of bioethanol of 16.8 g/L was attained in 72hrs fermentation time. The study infers that SHF has great potential for producing high-titer ethanol commercially and supports waste-to-energy strategies.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100131"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143839772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of production and utilisation of ammonia as potential fuel for compression ignition engines 氨作为压缩点火发动机潜在燃料的生产和利用综述
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2025.100116
Jaffar Hussain , Marutholi Mubarak , Duraisamy Boopathi , Ravikumar Jayabal
{"title":"A comprehensive review of production and utilisation of ammonia as potential fuel for compression ignition engines","authors":"Jaffar Hussain ,&nbsp;Marutholi Mubarak ,&nbsp;Duraisamy Boopathi ,&nbsp;Ravikumar Jayabal","doi":"10.1016/j.nxsust.2025.100116","DOIUrl":"10.1016/j.nxsust.2025.100116","url":null,"abstract":"<div><div>For centuries, internal combustion engines (ICEs) have powered cars using gasoline and diesel as the primary fuel. Bio-derived fuels have been blended with conventional fuels to address the depletion of fossil fuels and their associated greenhouse effect. The researchers focus on finding new technology that leads to carbon-free mobility. Renewable energy sources such as ammonia, hydrogen, and CNG are becoming increasingly popular as efficient substitutes for traditional fuels. Due to the concern about the production and storage of hydrogen, ammonia is gaining momentum due to its better hydrogen-storing capacity. This review paper aims to discuss the various ammonia production processes, the possibilities of ammonia as fuel in conventional CI engines, and the use of ammonia in internal combustion engines. Research has shown that the addition of ammonia to CI enhances its performance, and the use of dual fuel can boost the output's economic efficiency. However, it is important to note that this approach may also lead to increased NOₓ emissions. Some of the most important things that the review showed were that ammonia works well in dual fuel mode, 40–60 % diesel fuel energy is needed for maximum fuel efficiency, and NO emissions go down if ammonia replaces less than 40 % of the energy. For this reason, ammonia could potentially serve as a fuel for CI engines, leading to improved performance and a reduction in NOₓ emissions.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100116"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological pretreatment of lignocellulosic biomass as a sustainable option for biofuel production 木质纤维素生物质的生物预处理作为生物燃料生产的可持续选择
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2025.100133
Naveen Kumar , Himanshu Saini , Neeraj K. Aggarwal , Nishu Jangra , Kavita Dhiman , Ishu Sangwan
{"title":"Biological pretreatment of lignocellulosic biomass as a sustainable option for biofuel production","authors":"Naveen Kumar ,&nbsp;Himanshu Saini ,&nbsp;Neeraj K. Aggarwal ,&nbsp;Nishu Jangra ,&nbsp;Kavita Dhiman ,&nbsp;Ishu Sangwan","doi":"10.1016/j.nxsust.2025.100133","DOIUrl":"10.1016/j.nxsust.2025.100133","url":null,"abstract":"<div><div>Biofuels derived from lignocellulosic material are renewable, sustainable, and ecologically friendly, presenting a significant alternative to fossil fuels. However, before saccharification, pretreatment is an important stage in arranging the lignocellulose layers. The biological treatment of lignocellulose, utilizing microbes such as bacteria and fungi, is increasingly prevalent due to its financial and environmental benefits. Choosing the right microbial consortia with care is essential to effectively pretreating biomass. Our collection of exceptionally promising bacteria and/or fungi is capable of manufacturing a range of extracellular enzymes, such as lignases, cellulases, and hemicellulases. It can effectively treat lignocellulosic biomass biologically in order to produce biofuels. This review article offers an in-depth exploration of biological pretreatment strategies for lignocellulosic biomass, highlighting key mechanisms, innovative technologies, influencing factors, and the latest advancements shaping current research in the field.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100133"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143903953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dye adsorption on fish scale biosorbent from tannery wastewater 制革废水中鱼鳞生物吸附剂对染料的吸附
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2025.100112
Md. Abul Hashem , Forhad Ahammad , Bishwajit Chandra Das , Eshtiyaq Tauhid Enan , Modinatul Maoya , Mohammad Jakir Hossain Khan , Md. Mukimujjaman Miem
{"title":"Dye adsorption on fish scale biosorbent from tannery wastewater","authors":"Md. Abul Hashem ,&nbsp;Forhad Ahammad ,&nbsp;Bishwajit Chandra Das ,&nbsp;Eshtiyaq Tauhid Enan ,&nbsp;Modinatul Maoya ,&nbsp;Mohammad Jakir Hossain Khan ,&nbsp;Md. Mukimujjaman Miem","doi":"10.1016/j.nxsust.2025.100112","DOIUrl":"10.1016/j.nxsust.2025.100112","url":null,"abstract":"<div><div>In leather processing, dyeing is an essential operation to make it attractive for fashion style. Emitted dyeing wastewater contains dye, fixing agent, syntan, resin, and fat. Dye removal from real wastewater is challenging because it includes other matrices. Dyes in wastewater have an adverse influence on the aquatic ecosystem. This research concerns the suitability of fish biowaste adsorbent for dye removal from tannery wastewater. The obtained biosorbent was analyzed through Fourier Transform Infrared (FTIR) Spectroscopy, pH point of zero charge (pHpzc), Energy Dispersive Spectroscopy (EDS), and Scanning Electron Microscope (SEM). The dye removal efficiency was evaluated by monitoring the biosorbent dose, settling time, stirring time, and temperature effect. The dye adsorption mechanism was characterized using Freundlich and Langmuir’s regression models. The maximum dye removal efficiency (81.8 %) was achieved with a 2 g biosorbent dose per 50 mL of wastewater, 25 min stirring time, 30°C temperature, and 20 h settling time at pH 4.8. The adsorption kinetics demonstrated that the pseudo-second-order reaction (PSO) model shows a good regression coefficient (<em>R</em><sup><em>2</em></sup>=0.94). The removal of Total Dissolved Solids (TDS), Biochemical Oxygen Demand (BOD), turbidity, and Chemical Oxygen Demand (COD) were 39.8 %, 69.7 %, 48.1 %, and 90.1 %, respectively. Hence, the fish scale biosorbent could be a feasible adsorbent for leather dyeing wastewater treatment, and further research can be conducted to explore its potential for large-scale application.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100112"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143377915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信