{"title":"Green extraction of natural indigoid from Baphicacanthus cusia (Nees) Bremek using hydrophilic and hydrophobic deep eutectic solvent technology","authors":"Patteera Aoonboontum , Pattravee Thong-on , Nakuntwalai Wisidsri , Suradwadee Thugmangmee , Tammanoon Rungsang , Nanthaka Khorana , Jukkarin Srivilai","doi":"10.1016/j.nxsust.2024.100090","DOIUrl":"10.1016/j.nxsust.2024.100090","url":null,"abstract":"<div><div>This study focused on the development of an alternative and more environmentally friendly extraction solvent, a deep eutectic system (DES), for extracting indigoid pigments, specifically indigo and indirubin, from <em>Baphicacanthus cusia</em> (BC). BC is recognized in the textile industry as a natural vat dye and in traditional Chinese medicine as \"Qing-Dai\". It is known for treating inflammatory diseases such as psoriasis. In this study, 46 DES systems were compared with conventional methods. The hydrophobic DES, a terpenoid and fatty acid system comprising thymol:decanoic acid (DES40), and the hydrophilic DES, a choline chloride-based system comprising choline chloride: <em>p</em>-toluenesulfonic acid (DES19), showed significant extraction improvements. DES40 and DES19 achieved approximately 26-fold higher indigo content compared to classical ethanol and outperformed the harsh organic solvent dichloromethane. The green extraction process was optimized using a Box–Behnken design, considering parameters such as temperature, time and co-solvent. DES19 maximized indigo and indirubin content to 270.91±14.38 and 5.70±0.11 mg/g, respectively, while DES40 yielded 108.28 ± 3.9 and 0.16 ± 0.00 mg/mg/g, respectively. Safety evaluations using a cell-based MTT model with human skin cells in keratinocytes and fibroblasts showed that both DES19 and DES40 were safe at all concentrations tested. These results indicate that a more environmentally friendly solvent technology for the extraction of indigoids from BC using the DES is an efficient and potential application in the textile and pharmaceutical industries.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100090"},"PeriodicalIF":0.0,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sumit Kumar , Chetna Tewari , Ligy Philip , Nanda Gopal Sahoo
{"title":"Enhanced physicochemical properties of Himalayan Weeping Bamboo-biochar for rapid multicomponent textile dyes uptake under classical and ultrasound irradiation: A comparative study","authors":"Sumit Kumar , Chetna Tewari , Ligy Philip , Nanda Gopal Sahoo","doi":"10.1016/j.nxsust.2024.100089","DOIUrl":"10.1016/j.nxsust.2024.100089","url":null,"abstract":"<div><div>This study focused on synthesizing a low-cost adsorbent via a unique two-step solvothermal slow pyrolysis of <em>Drepanostachyum falcatum</em> plant biomass. It evaluated its adsorption capabilities for removing various textile dyes, including methylene blue (MB), basic fuchsin (BF), and methyl orange (MO), from aqueous solutions. Under conventional and ultrasound-assisted conditions, the adsorption performance was assessed for single, binary, and ternary dye systems. Comprehensive investigations examined the effects of environmental factors such as temperature, pH, humic acid, and interfering ions on adsorption. The findings revealed that ultrasonication significantly accelerated the adsorption process, making it up to six times faster than classical adsorption methods, and equilibrium was reached in one-tenth the time required without ultrasound. The experimental data best fit the pseudo-second-order kinetics model, indicating that chemisorption was the dominant adsorption mechanism. Additionally, the Freundlich isotherm suggested multilayer sorption on the biochar surface. Maximum adsorption capacities under ultrasound were found to be 139.34 mg/g for MB, 75.09 mg/g for MO, and 98.13 mg/g for BF dyes, with a higher affinity observed for cationic dyes compared to anionic dyes. The study provides insights into an efficient, novel synthesis method for converting waste biomass into a valuable adsorbent for dye removal. It also highlights the role of ultrasound in enhancing physicochemical properties, facilitating improved mass transfer, and promoting better interaction between the dyes and the adsorbent.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100089"},"PeriodicalIF":0.0,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High energy and rate capable supercapacitor of polyaniline / vanadium pentoxide nanocomposite and its green electrolyte","authors":"Aranganathan Viswanathan, Adka Nityananda Shetty","doi":"10.1016/j.nxsust.2024.100088","DOIUrl":"10.1016/j.nxsust.2024.100088","url":null,"abstract":"<div><div>The concept of hybrid supercapacitors of combining the high energy density (<em>E</em>) of batteries and high power densities (<em>P</em>) of supercapacitors is better achieved with the PANI53.84 %/V<sub>2</sub>O<sub>5</sub>46.15 % nanocomposite (PV). As it exhibited a supercapacitor performance on par with that of Li – ion batteries. This high energy features of PV are achieved by the green approach of using the by-product obtained in the synthesis of electrode material as its electrolyte with and without modification. The energy storage parameters of PV in the presence of 1 M H<sub>2</sub>SO<sub>4</sub> (SA) as electrolyte, are very unique as they increased in quantity with increase in No. of energy storage/delivery cycles. The PV displayed an exceptional durability up to 20,500 cycles at 0.4 V s<sup><img>1</sup>, and specific capacity (<em>Q</em>) of 592.4 C g<sup><img>1</sup>, an <em>E</em> of 98.73 W h kg <sup><img>1</sup> (in the order of Li-ion batteries) and a <em>P</em> of 1.200 kW kg<sup><img>1</sup> at 1 A g<sup><img>1</sup> after 10,800 cycles in the presence of SA. A highest rate capability of 65.45 % up to 15 A g<sup><img>1</sup> is achieved when the by-product of PANI (SL of PANI) is used as the electrolyte for PV. When the by-product of PV is used as its electrolyte after its acidification with conc. methane sulphonic acid (MSA+SLPV), the <em>Q</em> of 388.0 C g<sup><img>1</sup>, an <em>E</em> of 64.66 W h kg<sup><img>1</sup> and a <em>P</em> of 1.200 kW kg<sup><img>1</sup> were achieved at 1 A g<sup><img>1</sup>. The MSA+SLPV also features the energy enhancement with increase in number of days.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100088"},"PeriodicalIF":0.0,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Yusuf Suleiman , Ahmad Muhammad Abiso , Opeoluwa Olusola Fasanya , Abdulazeez Yusuf Atta , Fei Ye , Joydeep Dutta , Baba Jibril El-Yakubu
{"title":"Exploring mechanisms, efficiency, and emerging technologies for zero-valent metals in water treatment: A review","authors":"Muhammad Yusuf Suleiman , Ahmad Muhammad Abiso , Opeoluwa Olusola Fasanya , Abdulazeez Yusuf Atta , Fei Ye , Joydeep Dutta , Baba Jibril El-Yakubu","doi":"10.1016/j.nxsust.2024.100087","DOIUrl":"10.1016/j.nxsust.2024.100087","url":null,"abstract":"<div><div>Domestic, industrial and agricultural activities require large amounts of water. This necessitates the need for an effective solution to meet the increasing water demand worldwide. A Huge amount of wastewater is generated daily and when this is left untreated, the contaminants present in these effluents may be harmful to the environment. There are various treatment techniques for the abatement of the contaminants present in these wastewaters. Conventional approaches often employed are the biological, physical and chemical methods. Zero-valent metals (ZVMs) such as zero-valent iron, zero-valent zinc, zero-valent aluminium to mention a few have emerged as promising candidates for wastewater treatment applications due to their unique reactivity and ability to facilitate the removal of various contaminants. In this report, a comprehensive review of the mechanisms, efficiency, and emerging technologies associated with ZVM-based water treatment is provided. The underlying objectives for which the review aimed to address include (i) providing an understanding of the ZVMs used in water treatment applications and their properties, (ii) reviewing the mechanisms employed by ZVMs to sequestrate contaminants, (iii) evaluating the efficiency of ZVMs in the removal of contaminants and (iv) exploring the various emerging technologies used in ZVM-based water treatment and to provide some recommendations for future research.</div><div>It was concluded from the work that ZVMs abate contaminants found in wastewater through an interplay and synergy of physical, chemical and catalytic mechanisms. ZVMs, when used with other treatment techniques, provide better benefits in the treatment of diverse contaminants. To help achieve the full scale utilization of ZVMs potential, sustained research efforts combined with innovative approaches are needed for sustainable and efficient water treatment solutions. The review offers insights into technologies needed to eliminate diverse contaminants from wastewater, addressing important considerations regarding sustainability and future directions of ZVM-based water treatment technologies.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100087"},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Utibe A. Ofon , Uduak U. Ndubuisi-Nnaji , Anthony A. Adegoke , Nnanake-Abasi O. Offiong , Ogechi P. Ewenike , Solomon E. Shaibu
{"title":"Bioenergy potential of paper waste: Fungal pretreatment and kinetics modelling","authors":"Utibe A. Ofon , Uduak U. Ndubuisi-Nnaji , Anthony A. Adegoke , Nnanake-Abasi O. Offiong , Ogechi P. Ewenike , Solomon E. Shaibu","doi":"10.1016/j.nxsust.2024.100086","DOIUrl":"10.1016/j.nxsust.2024.100086","url":null,"abstract":"<div><div>Using the fungi <em>Phanerochaete chrysosporium</em> and <em>Aspergillus niger</em> as a biopretreatment agent to improve degradation of lignocellulosic paper with analogous increase in biogas production, anaerobic digestion (AD) was executed. Milled and hydrothermally-treated (HT) or steamed paper were separately inoculated for 360 hr at 28 °C with each fungal species, with an uninoculated treatment as control. AD experiment was conducted in bench-scale batch bioreactors for 48 days at 40°C. The initial characteristics of the feedstock and inoculum were examined in addition to biomethane yield, total and volatile solids degradation, and lignocellulosic content removal. The pretreatment of milled paper with <em>P. chrysosporium</em> resulted in the highest biogas yield of 1035 mL/gVS, followed by <em>A. niger</em> with a yield of 550 mL/gVS. These values represented a significant increase (p < 0.05) of 226 % and 73 % compared to the untreated feedstock, respectively. <em>P. chrysosporium</em> pretreatment achieved the highest total solids removal of 66.85 %, whereas <em>A. niger</em> pretreatment resulted in the maximum volatile solids removal of 64.63 % in HT-paper waste. <em>P. chrysosporium</em> also exhibited the highest lignin removal efficiency, with 84.31 % in milled feedstock and 79.17 % in the steamed state. <em>A. niger</em> showed 77.28 % and 67.09 % lignin removal in the milled and HT paper, respectively. The study demonstrated that pretreatment with <em>P. chrysosporium</em> and <em>A. niger</em> significantly (p<0.05) improved biogas production by facilitating the biodegradation of lignocellulosic components. All measured biomethane data from experiments fitted adequately to the modified Gompertz model with R<sup>2</sup> ranging from 0.97 to 0.99.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100086"},"PeriodicalIF":0.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maxime Léger , Andrea La Monaca , Niladri Basu , George P. Demopoulos
{"title":"Alternatives assessment of polyvinylidene fluoride-compatible solvents for N-methyl pyrrolidone substitution in lithium-ion battery cathodes","authors":"Maxime Léger , Andrea La Monaca , Niladri Basu , George P. Demopoulos","doi":"10.1016/j.nxsust.2024.100084","DOIUrl":"10.1016/j.nxsust.2024.100084","url":null,"abstract":"<div><div>Lithium-ion batteries (LIBs) are central to electrification yet, to increase the efficiency and scalability of electric systems, energy storage technologies must integrate sustainability concepts into their design. Notably, the incumbent LIB technology uses the reprotoxic solvent N-methyl pyrrolidone (NMP) to dissolve polyvinylidene fluoride (PVdF) as a binder. This solvent, of concern to human and ecological health, must be replaced with less toxic alternatives. Accordingly, the objective of this study was to determine which potential solvents, compatible with PVdF binder within the cathode processing of LIBs, could replace NMP. This study followed the U.S. National Research Council’s <em>Framework to Guide Selection of Chemical Alternatives,</em> and thus assembled and compared data concerning ecological and human hazards, performance, and cost. Five solvents were assessed as alternatives to NMP, derived from an analysis of 948 cells of data (708 cells of hazard data, 54 cells of performance data, and 186 cells of cost data). Triethyl phosphate (TEP) and N-N’-dimethylpropyleneurea (DMPU) are found to exhibit reprotoxic properties, and dimethylsulfoxide (DMSO) raised concerns in all three data categories studied. The most promising alternatives to NMP were dihydrolevoglucosenone (Cyrene) and γ-valerolactone (GVL). With demand for sustainable energy storage growing, the results of this study aim to guide research and innovation of LIB technologies while avoiding regrettable substitutions in developing NMP-free LIBs.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100084"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John D. Chea , Gerardo J. Ruiz-Mercado , Raymond L. Smith , Michael A. Gonzalez , David E. Meyer
{"title":"Sustainability assessment of additive manufacturing end-of-life material management","authors":"John D. Chea , Gerardo J. Ruiz-Mercado , Raymond L. Smith , Michael A. Gonzalez , David E. Meyer","doi":"10.1016/j.nxsust.2024.100085","DOIUrl":"10.1016/j.nxsust.2024.100085","url":null,"abstract":"<div><div>Additive manufacturing (AM) methods enable complex, customized, and on-demand production of many products from different material types across various industries. The growing demand for flexible and more sustainable manufacturing solutions places AM in the mix of processes considered for non-commodities. However, AM processes also present unintentional environmental releases in end-of-life (EoL) material management, compromising overall sustainability. Data availability to assess the sustainability of individual EoL material management from individual AM processes is limited. Even so, EoL materials generated across AM practices frequently overlap, supporting high-level assessment as an alternative approach. Therefore, a holistic AM EoL material management sustainability analysis was completed using a customized list of efficiency, environmental, energy, and economic indicators from the <u>G</u>auging <u>R</u>eaction <u>E</u>ffectiveness for the <u>E</u>nvironmental <u>S</u>ustainability of <u>C</u>hemistries with a multi-<u>O</u>bjective <u>P</u>rocess <u>E</u>valuator (GREENSCOPE) methodology. Subsequently, this assessment identified low material recycling rates and high energy costs in some EoL material management processes, such as incineration and recovery. Subsequently, a trade-off analysis was performed to determine process modification opportunities, including implementing recycling to reduce the amount of hazardous waste at the expense of additional energy and cost investment. The AM EoL-specific sustainability analysis serves as a resource to offer insights and empower policymakers and stakeholders to enhance pollution prevention strategies and optimize the existing EoL material management processes.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100085"},"PeriodicalIF":0.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kenyi Ho , Sie Yon Lau , Ling Hui Ting , Abdul Zahir , Man Kee Lam , Sook Yan Choy , Steven Lim , Tan Inn Shi
{"title":"Review of starch-based coagulants for water treatment: Mechanisms, extraction and surface modification","authors":"Kenyi Ho , Sie Yon Lau , Ling Hui Ting , Abdul Zahir , Man Kee Lam , Sook Yan Choy , Steven Lim , Tan Inn Shi","doi":"10.1016/j.nxsust.2024.100083","DOIUrl":"10.1016/j.nxsust.2024.100083","url":null,"abstract":"<div><div>As the UN Sustainable Development Goal 6 emphasizes, sustainable and equitable access to clean water is paramount to improving public health and minimizing waterborne disease transmission. Due to rapid urbanization and population growth, freshwater resources are depleted, and approximately two-thirds of the world’s population will experience severe water scarcity by 2050. The coagulation-flocculation method demonstrates a viable solution for water treatment due to the minimal technical requirements, short treatment duration, and low material cost. Recently, starch-based coagulants have garnered significant attention due to their non-toxic nature, abundance, and cost-effectiveness. However, the coagulation efficiency of starch can be further enhanced through surface modification. The performance efficiency of starch-based coagulants largely depends on the modification technique, as it may influence the density of the surface charge. This review paper comprehensively discusses the coagulation mechanism of starch-based coagulants and the distinct methods for starch extraction. The removal efficacy of starch-based coagulants primarily depends on various physicochemical properties such as surface functional groups, zeta potential, and the elemental and morphological properties of the coagulant. Tailoring these properties is essential for developing a promising starch-based coagulant capable of effectively removing pollutants from water. Finally, the future prospects of starch-based coagulants are provided to highlight the exciting opportunities for sustainable water treatment and alignment with circular economy principles.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100083"},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Use of EDS/EDX to evaluate heavy metals pollution in water sources","authors":"Michel Mutabaruka , Aditya Rana","doi":"10.1016/j.nxsust.2024.100082","DOIUrl":"10.1016/j.nxsust.2024.100082","url":null,"abstract":"<div><div>The objective of the study was to evaluate the role of brick kilns in contaminating water bodies with heavy metals in Punjab, India. The energy-dispersive x-ray spectroscopy (EDS/EDX) machine effectively tested heavy metals in water samples. The research revealed that the surface water near the brick kilns was extensively polluted with heavy metals. Their Pollution Load Index (PLI) values varied between 2.83 and 52.98, and their degree of contamination was “Progressive deterioration”. The PLI values for groundwater ranged between 0.089 and 3.68, and the degree of contamination varied from “Baseline levels of pollutants” to “Progressive deterioration”. In general, the groundwater of the studied area had a PLI value of 0.477 (Baseline levels of pollutants), whereas the surface water had a PLI value of 11.453 (Progressive deterioration). The Water Quality Index (WQI) of groundwater was highly influenced by heavy metals, notably Arsenic (As) from lithologic origins, and Lead (Pb) from the burning of fuels in the brick kilns. In descending order, Pb>Zn>As>Cr>Ni metals were influencing the PLI, and the correlation matrixes demonstrated that the presence of heavy metals was associated with the PLI and WQI values. Therefore, there is evidence that brick kilns are polluting water bodies with heavy metals. EDS proved to be one of the instruments to evaluate the chemical elements in water. It was recommended to enforce the law governing the use of biomass to reduce vast quantities of coal used in baking bricks.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100082"},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B.S. Teti , A.L.M. Amorim , E.C. Costa , N.B. Lima , K.G.B. Alves , N.B.D. Lima
{"title":"Incorporating industrial residue of submerged arc welding (SAW) in cement-based mortar matrices as a green strategy","authors":"B.S. Teti , A.L.M. Amorim , E.C. Costa , N.B. Lima , K.G.B. Alves , N.B.D. Lima","doi":"10.1016/j.nxsust.2024.100080","DOIUrl":"10.1016/j.nxsust.2024.100080","url":null,"abstract":"<div><div>The construction industry, a key player in the fight against greenhouse gas emissions and solid waste generation, is actively seeking sustainable solutions to mitigate environmental impacts. This study investigates the technical feasibility of incorporating submerged arc slag, a byproduct rich in calcium and silicon oxides, into the mechanical properties of mortars. Three mixtures with a water/cement ratio of 1.4 were prepared: a reference mixture, one with the addition of 10 % slag, and another with 10 % cement replaced by slag. Compressive strength tests were carried out at 7, 14, and 28 days and revealed average losses of 12.4 %, 18.9 %, and 22.9 % in the mixture with replaced cement, while the mixture with slag addition showed lower losses of 2.6 %, 4.9 %, and 5.3 %. Although partial replacement of cement affects strength, levels remain within regulatory limits, and slag contributes to reducing CO<sub>2</sub> emissions, minimizes waste generation, and promotes the valorization of industrial byproducts. This study underscores the role of the construction industry in mitigating environmental impacts and the potential of submerged arc slag as a sustainable and effective alternative, balancing mechanical performance and environmental impact in civil construction.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100080"},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}