Next Sustainability最新文献

筛选
英文 中文
Comparative study on sunlight induced surfactants system in photogalvanics for solar energy conversion and storage
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2025.100101
Mohan Lal Mohan, KM Gangotri
{"title":"Comparative study on sunlight induced surfactants system in photogalvanics for solar energy conversion and storage","authors":"Mohan Lal Mohan,&nbsp;KM Gangotri","doi":"10.1016/j.nxsust.2025.100101","DOIUrl":"10.1016/j.nxsust.2025.100101","url":null,"abstract":"<div><div>The aim of the study is to harness and store solar energy through photogalvanic (PG) cells. The mixed surfactant pairs, i.e., NaLS+Brij-35 and NaLS+Tween-80, with photosensitizer methylene blue and reductant D-xylose have been used for PG cells. The resulting photoelectrochemical process in photogalvanics leads to energy conversion for sustainable development in the field of solar energy. The electrical outcomes, i.e., V<sub>OC</sub>, SPP, SPC, SP, and SCE, were studied for a sunlight-induced PG cell for photocatalytic conversion. The observed V<sub>OC</sub>, SPP, SPC, SP, and SCE with NaLS+Tween-80 surfactant is of the order of 1120 mV, 867 mV 238.00 µA, 206.34 µW, and 1.3012 %, respectively. The observed V<sub>OC</sub>, SPP, SPC, SP, and SCE with NaLS+Brij-35 surfactant is of the order of 1123 mV, 870 mV, 240.00 µA, 208.80 µW, and 1.3112 %, respectively. Conclusively, PG cells with NaLS+Brij-35 surfactant are better than PG cells with NaLS+Tween-80. This new combination of surfactants still has the scope to achieve the enhanced electrical results of PG cells for sustainable development.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100101"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous electrocoagulation treatment of chromium from tannery wastewater in a cylindrical column
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2025.100113
Nahid M. Genawi , Nafis Mahmud , Elfatih A. Hassan , Muftah H. El-Naas
{"title":"Continuous electrocoagulation treatment of chromium from tannery wastewater in a cylindrical column","authors":"Nahid M. Genawi ,&nbsp;Nafis Mahmud ,&nbsp;Elfatih A. Hassan ,&nbsp;Muftah H. El-Naas","doi":"10.1016/j.nxsust.2025.100113","DOIUrl":"10.1016/j.nxsust.2025.100113","url":null,"abstract":"<div><div>Discharging tannery wastewater into the water resources can lead to several environmental implications due to its high chromium and pollutants content, adversely affecting both aquatic and human life. Consequently, researchers are focusing on the development of efficient treatment methods for post-tanning effluents with the target of removing chromium to alleviate this pollution problem. In this regard, electrocoagulation has emerged as a leading technology for chromium removal from tannery wastewater. In this study, a continuous electrocoagulation column was applied for the removal of chromium ions from tannery wastewater collected from local industry. The effect of current density, pH, and effluent chromium concentration were studied for the removal of chromium ions. The results showed that a maximum chromium removal (99.94 %) was achieved within one hour in batch mode at current density, pH, and effluent concentration of 10 mA/cm<sup>2</sup>, 6.5, and 500 mg/L, respectively. The continuous electrocoagulation system was used to evaluate the process dynamics and steady-state stability of the reactor system by introducing step changes in operating conditions (flow rate, pH, current density, and concentration). The experiments of the continuous electrocoagulation reactor system were conducted at a flow rate of 50 ml/min (HRT = 34 min) with the results promise effective removal of chromium ions from tannery wastewater using the electrocoagulation system.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100113"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143377916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crayfish shell biochar for methyl violet adsorption: Equilibrium and kinetic studies
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2024.100093
Azrul Nurfaiz Mohd Faizal , Chew Hui Wen , Nicky Rahmana Putra , Ahmad Syahmi Zaini , Augustine Agi , Abu Hassan Nordin , Muhammad Abbas Ahmad Zaini
{"title":"Crayfish shell biochar for methyl violet adsorption: Equilibrium and kinetic studies","authors":"Azrul Nurfaiz Mohd Faizal ,&nbsp;Chew Hui Wen ,&nbsp;Nicky Rahmana Putra ,&nbsp;Ahmad Syahmi Zaini ,&nbsp;Augustine Agi ,&nbsp;Abu Hassan Nordin ,&nbsp;Muhammad Abbas Ahmad Zaini","doi":"10.1016/j.nxsust.2024.100093","DOIUrl":"10.1016/j.nxsust.2024.100093","url":null,"abstract":"<div><div>This work was aimed to establish the equilibrium and kinetics of methyl violet removal onto crayfish shell biochars. The biochars were prepared through pyrolysis at 500, 650 and 800 <span><math><mi>℃</mi></math></span> for 1.5 h. The biochars were labelled as CS500, CS650 and CS800, respectively. All biochars are highly mesoporous with CS650 exhibits a higher surface area of 665 m<sup>2</sup>/g. The adsorption results are tied up with the physiochemical properties of biochars. The CS800 displays the maximum dye capacity at 1079 mg/g. The performance of biochars is given in the order of, CS800 &gt; CS650 &gt; CS500. The equilibrium of methyl violet adsorption was best described by modified Langmuir isotherm, while the kinetic data obeyed pseudo-second-order model. The removal of methyl violet is governed partly by precipitation onto crayfish shell biochars. To conclude, the crayfish shell is a potential feedstock of biochar for dye wastewater treatment.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100093"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Future of battery thermal management systems (BTMS): Role of advanced technologies, artificial intelligence and sustainability
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2025.100114
Moinuddin Mohammed Quazi , Farzad Jaliliantabar , Sudhakar Kumarasamy , Mohammadamin Ezazi
{"title":"Future of battery thermal management systems (BTMS): Role of advanced technologies, artificial intelligence and sustainability","authors":"Moinuddin Mohammed Quazi ,&nbsp;Farzad Jaliliantabar ,&nbsp;Sudhakar Kumarasamy ,&nbsp;Mohammadamin Ezazi","doi":"10.1016/j.nxsust.2025.100114","DOIUrl":"10.1016/j.nxsust.2025.100114","url":null,"abstract":"<div><div>The research in battery thermal management systems (BTMS) eventually transforms from well-established conventional techniques through hybrid approaches towards smart and innovative changeover. This is only plausible thanks to researchers' imminent focus towards including artificial intelligence (AI), smart materials, and sustainable approaches in BTMS. This article provides a current understanding of AI models, approaches, and techniques employed to predict the battery's state, failure conditions, high-stress scenarios and thermal behaviour, including maximum and minimum temperatures. The pros and cons of various AI technology and methods are examined. This is followed by a detailed review of emerging advanced technologies such as additive manufacturing to develop customized cooling channels, optimized structures, bioinspired BTMS to improve thermal behaviours, and smart materials for all weather, both heating and cooling solutions. The mist-based cooling system for hazard mitigation is another emerging area for thermal runaway prevention that is reviewed. Lastly, the role of sustainability in technological, socioeconomic, environmental, and cost-effective measures is also discussed. Finally, the potential directions and key points for the future development of battery thermal management systems for a wide range of operation conditions that prevent thermal runaway and safety mitigation systems are also proposed.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100114"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of waste plastic reutilized polymeric membrane fabrication for efficient wastewater treatment
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2025.100117
Yeit Haan Teow , Aerry Ting Wei Huan , Zhen Hong Chang
{"title":"Optimization of waste plastic reutilized polymeric membrane fabrication for efficient wastewater treatment","authors":"Yeit Haan Teow ,&nbsp;Aerry Ting Wei Huan ,&nbsp;Zhen Hong Chang","doi":"10.1016/j.nxsust.2025.100117","DOIUrl":"10.1016/j.nxsust.2025.100117","url":null,"abstract":"<div><div>The escalating global production of plastic waste and the urgent need for clean water presents profound environmental and sustainability concerns. Repurposing waste plastic into value-added products, such as polymeric membranes for ultrafiltration applications, offers a promising avenue for addressing these challenges. This study focuses on utilizing waste polystyrene (PS) to synthesize membranes via non-solvent induced phase separation method. Through a systematic optimization process utilizing Response Surface Methodology (RSM), the effects of solvent type, PS concentration, and titanium dioxide (TiO<sub>2</sub>) loading on membrane performance were explored. The fabricated PS polymeric membranes were evaluated for their effectiveness in humic acid removal using a dead-end membrane filtration system. The optimal PS polymeric membrane formula, achieved at PS concentration of 16.31 wt% and TiO<sub>2</sub> concentration of 0.10 g/L using NMP as the solvent, exhibited a permeate flux of 166.55 L/m<sup>2</sup> h and HA rejected of 84 %. The study also demonstrates the suitability of RSM as a statistical tool for membrane formulation optimization, with low percentage errors (5.04 % for permeate flux and 0.69 % for HA rejection). Furthermore, fouling mechanism analysis utilizing the Hermia’s model confirmed the prevalence of cake filtration in the optimized PS polymeric membrane filtration. This study contributes to the advancement of sustainable membrane technology for wastewater treatment, offering insights into the potential of waste plastic reutilization in membrane fabrication and addressing critical environmental and water resource challenges.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100117"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143453094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closing the PET plastic recycling loop: A sustainable transformation from plastic to fiber
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2024.100095
Theresa Massoud , Jacinta Dsilva
{"title":"Closing the PET plastic recycling loop: A sustainable transformation from plastic to fiber","authors":"Theresa Massoud ,&nbsp;Jacinta Dsilva","doi":"10.1016/j.nxsust.2024.100095","DOIUrl":"10.1016/j.nxsust.2024.100095","url":null,"abstract":"<div><div>Universities and colleges are becoming models for the rest of the world in sustainability initiatives. A Dubai-based university has taken action by collaborating with two industry entities in the application of the 3 R Model to promote sustainability. This article aims to investigate each phase of this collaboration, which includes a waste management company to collect the community’s mixed plastic; a material recovery facility to segregate the polyethylene terephthalate (PET) plastic; and a sustainable manufacturing solutions entity called DGrade to sustainably transform the PET plastic into fibers that produce over 200 types of fabrics. DGrade synthesizes clothing and supplies from these fabrics that are sold back to the University. This process uses 76 % less energy, 20 % less water (remaining 80 % is recycled back), and lowers carbon emissions by 79 %. Giving PET plastic a second life provides a practical solution to the challenges posed by the global plastic waste crisis and successfully closes the loop on the recycling of PET plastic.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100095"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioengineering in Solid-State Fermentation for next sustainable food bioprocessing
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2025.100105
Muyideen Olaitan Bamidele, Micheal Bola Bamikale, Eliseo Cárdenas-Hernández, Motolani Adepeju Bamidele, Guillermo Castillo-Olvera, José Sandoval-Cortes, Cristóbal Noe Aguilar
{"title":"Bioengineering in Solid-State Fermentation for next sustainable food bioprocessing","authors":"Muyideen Olaitan Bamidele,&nbsp;Micheal Bola Bamikale,&nbsp;Eliseo Cárdenas-Hernández,&nbsp;Motolani Adepeju Bamidele,&nbsp;Guillermo Castillo-Olvera,&nbsp;José Sandoval-Cortes,&nbsp;Cristóbal Noe Aguilar","doi":"10.1016/j.nxsust.2025.100105","DOIUrl":"10.1016/j.nxsust.2025.100105","url":null,"abstract":"<div><div>Solid-State Fermentation (SSF) is a breakthrough approach in the sustainable bioprocessing of foods that applies bioengineering techniques to enhance the accumulation of bioactive compounds in functional foods. A review of bioengineering strategies that optimize microbial growth and metabolite production in SSF systems is presented in this chapter, including novel bioreactor designs and genetic engineering of microorganisms combined with metabolic engineering. The present document also describes some of the important developments in the extraction and purification of bioactive molecules from SSF processes, with special emphasis on their potential for using waste from the food industry to reduce the environmental burden. Combining SSF with state-of-the-art biotechnological tools aids in the efficient production of high value-added compounds, placing a strong basis for economic-ecological sustainability. The document further elaborates on the optimization techniques necessary for the maximum efficiency of SSF processes, trends, and challenges in the area in the future, and case studies that illustrate their application in real life. By providing an incisive review of the present status and future directions of SSF in food bioprocessing, this contribution highlights the importance of SSF in promoting sustainable food production systems.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100105"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of nanoparticles and algae as mediators with Trifolium sp. for the assembly of biosolar cells
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2025.100120
Ayesha Alam , Arifa Tahir , Faiza Anum , Labeeb Ali , Kanza Butt , Ihsan Ali
{"title":"Assessment of nanoparticles and algae as mediators with Trifolium sp. for the assembly of biosolar cells","authors":"Ayesha Alam ,&nbsp;Arifa Tahir ,&nbsp;Faiza Anum ,&nbsp;Labeeb Ali ,&nbsp;Kanza Butt ,&nbsp;Ihsan Ali","doi":"10.1016/j.nxsust.2025.100120","DOIUrl":"10.1016/j.nxsust.2025.100120","url":null,"abstract":"<div><div>This work focuses on overcoming the electrical energy crisis by constructing small-scale, cost-effective, eco-friendly, and solar energy-derived biosolar cells for power generation. <em>Trifolium sp.,</em> also known as clover, is flexible and adaptable to all ecological conditions, produces high biomass per unit land area, contains low lignin content, and is cost-intensive. It is reported to have high photosynthetic activity thus making it a potential choice over other biological components (plants, bacteria, microalgae) for constructing solar cells as the base medium. The experiment tested the ground biomass of <em>Trifolium sp</em>. fresh leaves with four potential mediators including titanium dioxide (TiO2), silver (Ag-Np), and gold nanoparticles (Au-Np), and blue-green spirulina algae to optimize the energy efficiency of <em>Trifolium</em> ground fresh leaves biomass under varying light intensities and cell sizes during the day. The results indicated <em>Trifolium sp.</em> as a potential plant that can efficiently convert solar energy into electrical energy without adding mediators. The response optimization desirability function (d= 0.991) validated the highest current yield of 718 mA from 252 cm<sup>2</sup> (approx. avg of 4.01 mA/cm<sup>2</sup>) cell plate in non-mediated biosolar cell and (d= 0.94) 1476 mA from 140 cm<sup>2</sup> (approx. avg. of 10.5 mA/cm<sup>2</sup>) from microalgae-mediated solar plates. This study supports <em>Trifolium sp.</em> as an eco-friendly material for the construction of cost-effective biosolar cells and output was improved with the supplementation of spirulina algae. The optimum size of the solar panel is still a debatable question, and more research experiments with the integration of green biomass and nanotechnology are suggested. The concept paves the way for the valorization of organic biomass waste as a potential input resource for future electrical power generation.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100120"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143510348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Java and Bali land surface temperature decrease variation
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2024.100096
Munawar Munawar , Tofan Agung Eka Prasetya , Marzuki Marzuki , Muhamad Rifki Taufik , Teuku Fadhla
{"title":"Java and Bali land surface temperature decrease variation","authors":"Munawar Munawar ,&nbsp;Tofan Agung Eka Prasetya ,&nbsp;Marzuki Marzuki ,&nbsp;Muhamad Rifki Taufik ,&nbsp;Teuku Fadhla","doi":"10.1016/j.nxsust.2024.100096","DOIUrl":"10.1016/j.nxsust.2024.100096","url":null,"abstract":"<div><div>The world is facing global warming due to natural processes and human activities. From 1880–1980, the global average temperature increased by 1°C per century. Land Surface Temperature (LST) is a crucial climatic variable for analyzing the interaction between the Earth's surface and the atmosphere. Java Island has the highest population and is more urbanized than other islands in Indonesia. From January 2001 to January 2020, LST daytime data were downloaded from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) Land Products Global Subsetting and Visualization Tool. This study aims to investigate the LST seasonal patterns and trends of Bali and Java islands. The appropriate distance between sub-regions was also observed, with 105 pixels and 52.5 pixels producing two and six super-regions, respectively. It was found that seasonal patterns could be represented with pixel distances of 105 and 52.5, using eight knots of cubic splines. From 2001–2020, the lowest LST was recorded in January, while the highest was in September. The highest average daily LST, 38.32 °C, was found in Cikande, Serang, and Banten, likely due to industrial activity. This study also analyzed LST fluctuations using seven knots of the cubic spline. It was found that the average daily LST decreased by −0.113 °C per decade in Java and Bali. The western super-regions of Java showed significant LST increases, while the eastern super-regions showed slight decreases. For the 52.5-pixel distance, there was no substantial variation in average LST, though Jakarta and Banten showed significant increases. The 105-pixel distance is useful for examining LST variations on small islands like Java, while the 52.5-pixel distance can detect deeper variations in smaller super-regions. This study also noted that monsoon season and precipitation impact LST decline, and suggested that further research is needed to validate these findings. Additional variables like NDVI, land elevation, and land cover should be considered for more accurate estimations, especially on larger islands or continents farther from the equator.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100096"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing nature-based adsorbents for removal of microplastics and nanoplastics in controlled polluted aqueous systems: A systematic review of sources, properties, adsorption characteristics, and performance
Next Sustainability Pub Date : 2025-01-01 DOI: 10.1016/j.nxsust.2025.100119
Aniekan E. Essien, Sarah E. Dickson-Anderson, Yiping Guo
{"title":"Utilizing nature-based adsorbents for removal of microplastics and nanoplastics in controlled polluted aqueous systems: A systematic review of sources, properties, adsorption characteristics, and performance","authors":"Aniekan E. Essien,&nbsp;Sarah E. Dickson-Anderson,&nbsp;Yiping Guo","doi":"10.1016/j.nxsust.2025.100119","DOIUrl":"10.1016/j.nxsust.2025.100119","url":null,"abstract":"<div><div>The pervasive distribution of microplastics and nanoplastics in water systems has raised significant concerns about their ecological and human health impacts. Traditional methods to mitigate plastic pollution are often inadequate, prompting the need for innovative and sustainable solutions. Agricultural waste or by-products (AWBP) are underutilized sources of adsorbents for environmental pollution control, particularly for microplastic and nanoplastic removal. Despite their low cost and high adsorption capacities, AWBP are frequently burned, dumped, or placed in landfills. Most importantly, there remains a notable gap in research, i.e., a systematic review of AWBP-based adsorbents for the removal of microplastics and nanoplastics, which is the novelty of this review. Therefore, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method, this study reviewed the use of hydrochar, biochar, and activated carbon (collectively termed nature-based adsorbents) for the removal of microplastics and nanoplastics, focusing on their sources, properties, adsorption characteristics, and performance. The principal findings and major conclusions indicate that these adsorbents can achieve up to 100 % adsorption efficiency for the removal of microplastics and nanoplastics. Environmental factors such as pH, temperature, and co-existing species can influence adsorption performance. Functional groups like -COOH, -OH, and -C<img>O enhanced adsorption efficiency. Multiple mechanisms, including physisorption and chemisorption, contributed to high adsorption capacities. The pseudo-second-order kinetic model best described the adsorption processes, with the Langmuir isotherm providing the best fitting. Additionally, these adsorbents offer long-term carbon sequestration and align with several Sustainable Development Goals. This review highlights current knowledge gaps and provides recommendations for future research to further improve this technology.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100119"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143528914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信