Aniekan E. Essien, Sarah E. Dickson-Anderson, Yiping Guo
{"title":"Utilizing nature-based adsorbents for removal of microplastics and nanoplastics in controlled polluted aqueous systems: A systematic review of sources, properties, adsorption characteristics, and performance","authors":"Aniekan E. Essien, Sarah E. Dickson-Anderson, Yiping Guo","doi":"10.1016/j.nxsust.2025.100119","DOIUrl":"10.1016/j.nxsust.2025.100119","url":null,"abstract":"<div><div>The pervasive distribution of microplastics and nanoplastics in water systems has raised significant concerns about their ecological and human health impacts. Traditional methods to mitigate plastic pollution are often inadequate, prompting the need for innovative and sustainable solutions. Agricultural waste or by-products (AWBP) are underutilized sources of adsorbents for environmental pollution control, particularly for microplastic and nanoplastic removal. Despite their low cost and high adsorption capacities, AWBP are frequently burned, dumped, or placed in landfills. Most importantly, there remains a notable gap in research, i.e., a systematic review of AWBP-based adsorbents for the removal of microplastics and nanoplastics, which is the novelty of this review. Therefore, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method, this study reviewed the use of hydrochar, biochar, and activated carbon (collectively termed nature-based adsorbents) for the removal of microplastics and nanoplastics, focusing on their sources, properties, adsorption characteristics, and performance. The principal findings and major conclusions indicate that these adsorbents can achieve up to 100 % adsorption efficiency for the removal of microplastics and nanoplastics. Environmental factors such as pH, temperature, and co-existing species can influence adsorption performance. Functional groups like -COOH, -OH, and -C<img>O enhanced adsorption efficiency. Multiple mechanisms, including physisorption and chemisorption, contributed to high adsorption capacities. The pseudo-second-order kinetic model best described the adsorption processes, with the Langmuir isotherm providing the best fitting. Additionally, these adsorbents offer long-term carbon sequestration and align with several Sustainable Development Goals. This review highlights current knowledge gaps and provides recommendations for future research to further improve this technology.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100119"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143528914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical and microstructural properties of sustainable ternary blended alkali-activated concrete","authors":"Tejeswara Rao Maganti , Krishna Rao Boddepalli","doi":"10.1016/j.nxsust.2025.100122","DOIUrl":"10.1016/j.nxsust.2025.100122","url":null,"abstract":"<div><div>In recent years, there has been a surge in interest surrounding alkali activated concrete (AAC), a novel type of concrete praised for its environmental and construction applications. This study focuses on ternary blended alkali-activated concrete (TBAAC) using fly ash, ground granulated blast furnace slag (GGBS), and silica fume as binders. It also aims the replacement of sodium silicate (SS) solution with neutral grade sodium silicate (NGSS) solution with a silica modulus (SiO₂/Na₂O) of 3.12 to improve the fresh and hardened properties of TBAAC. In this context, the effects of silica fume and alkaline activators are studied to determine the optimum mix design and to evaluate the fresh and hardened properties of TBAAC cured under ambient conditions. To investigate the performance of TBAAC, various experiments were carried out to measure its workability, compressive strength, splitting tensile strength, flexural strength, regression analysis and microstructural characteristics. The results show TBAAC of 40 % fly ash, 50 % GGBS and 10 % silica fume resulted in higher mechanical properties, including compressive strength (74.12 MPa), splitting tensile strength (18.46 MPa), and flexural strength (20.45 MPa). The results of the XRD, SEM and EDX analysis show the formation of C-A-S-H, C-S-H, and N-A-S-H gel, indicating a densified matrix with fewer cracks and pore spaces. Furthermore, the Life Cycle Assessment (LCA) results demonstrate that the use of NGSS, with its improved environmental profile, leads to a lower environmental impact, contributing to a significant reduction in the carbon footprint of TBAAC and enhancing the sustainability of construction materials. The findings suggest that using NGSS-based TBAAC is advisable for construction applications, offering practical implications for reducing environmental impact while maintaining high performance in construction projects.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100122"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143577010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ZnO nanoparticles coated rice husk bio adsorbent for the removal of arsenic, phosphate and fluoride from contaminated water samples","authors":"Md. Iftikar Hussain , Nazrin Akhtara Rahman , Happymoni Dutta , Dipjyoti Dutta , Rekha Rani Dutta","doi":"10.1016/j.nxsust.2025.100129","DOIUrl":"10.1016/j.nxsust.2025.100129","url":null,"abstract":"<div><div>A novel and cost effective bio adsorbent is developed for the removal of As (V), phosphate (PO<sub>4</sub><sup>3-</sup>) and fluoride (F-) from water samples by using ZnO nanoparticles coated waste rice husk powder. ZnO nano particles used in this work are synthesized from rotten sweet potato pulp through Chemical precipitation method. The use of rice husk waste as an adsorption support is the key finding and novelty of this work. Integration of ZnO nano with rice husk not only provides high surface area for adsorption but also increase the adsorption rate. The batch adsorption study of the developed bio adsorbent was systematically carried out through the effect of pH, contact time, initial adsorbate concentrations etc. The developed bio adsorbent showed high removal efficiency with a minimum dosage of adsorbent (2 g L<sup>−1</sup>) and 180 minutes of contact time. The sorption equilibrium data fitted to Langmuir and Freundlich isotherm and kinetic model was studied by nonlinear curve fitting. The sorption equilibrium well to Langmuir (R<sup>2</sup> = 0.9975) isotherm for arsenic, Freundlich isotherm for both phosphate (R<sup>2</sup>= 0. 88257) and fluoride (R<sup>2</sup>= 0.91887). The maximum adsorption capacity is 28.23 mg/g for arsenic, 7.928 mg/g for phosphate and 23.01 mg/g for fluoride obtained from nonlinear curve fitting model. The 100 % removal of As (III) from real contaminated water sample signifies that the developed bio adsorbent will be an excellent opportunity for the removal of toxins from contaminated ground water. The developed bio adsorbent’s working principle is explained through a simple mechanism, highlighting a novel approach in this work.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100129"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143848419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in carbon dioxide capture and conversion technologies: Industrial integration for sustainable chemical production","authors":"Okezie Emmanuel , Rozina , Thaddeus C. Ezeji","doi":"10.1016/j.nxsust.2025.100108","DOIUrl":"10.1016/j.nxsust.2025.100108","url":null,"abstract":"<div><div>Developing efficient strategies to capture carbon dioxide (CO<sub>2</sub>) is essential to addressing the escalating challenges of global warming. Despite being a major greenhouse gas, CO<sub>2</sub> holds significant potential as a sustainable feedstock for chemical production. It can serve as a solvent, a preservative, a raw material for producing fuels, carbonates, polymers, and chemicals, and as a recovery agent for processes such as enhanced coal bed methane and oil recovery. This review highlights significant progress made in CO<sub>2</sub> capture and its integration into various industrial applications. While technologies such as adsorption, absorption, membrane separation, and cryogenics have shown promise, challenges related to cost, scalability, and the efficiency of capture and utilization continue to pose significant barriers to widespread adoption. Innovative strategies, including integrated carbon capture and conversion (ICCC) and integrated carbon capture and utilization (ICCU), present promising pathways to reduce costs by combining capture and utilization processes within a single facility. Additionally, catalytic processes and biological systems, such as microalgae and microbial strains (e.g., acetogens), are paving the way for sustainable CO<sub>2</sub> conversion into high-value products. Successful large-scale deployment of these technologies will require sustained interdisciplinary collaboration, robust policy frameworks, and increased investment in research and development. Prioritizing sustainable energy development and management offers the potential to significantly reduce anthropogenic CO<sub>2</sub> emissions while creating useful products. Advancing these technologies will not only help in mitigating climate change but also promote the transition to a circular carbon economy, which aligns with global sustainability goals.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100108"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S.H. Mahmud , S.C. Das , A. Saha , T. Islam , D. Paul , M.W. Akram , M.S. Jahan , M.Z.I. Mollah , M.A. Gafur , R.A. Khan
{"title":"Effect of glass fiber hybridization and radiation treatment to improve the performance of sustainable natural fiber-based hybrid (jute/glass) composites","authors":"S.H. Mahmud , S.C. Das , A. Saha , T. Islam , D. Paul , M.W. Akram , M.S. Jahan , M.Z.I. Mollah , M.A. Gafur , R.A. Khan","doi":"10.1016/j.nxsust.2025.100104","DOIUrl":"10.1016/j.nxsust.2025.100104","url":null,"abstract":"<div><div>The current work aims to utilize sustainable natural fibers such as jute fiber in composite materials and a sustainable technology such as gamma (γ) irradiation to further treat the composites for their performance enrichment. First, synthetic glass fibers were hybridized to improve the performance of natural fiber composites (NFCs) with different stacking sequences. Jute fabrics were used as a natural fiber reinforcement and unsaturated polyester resin was employed as a thermoset polymer matrix. Composite laminates were manufactured by compression molding using a heat press machine. After hybridization, the mechanical properties and water resistance were improved compared to the neat NFCs (i.e., jute fiber composites, J0). The tensile strength, bending strength, tensile modulus, bending modulus, and impact strength were improved to 7–56, 5–53, 21–54, 27–69, and 199–387 %, respectively, than the J0. Further, gamma (γ) irradiation (5.0 kGy) was employed as a sustainable and chemical-free technology to treat the hybrid composite materials and improve the performance, and the optimum improvement was revealed for H3 (G<sub>2</sub>J<sub>4</sub>G<sub>2</sub>) hybrid composites. For H3, the enhancement of tensile, bending and impact strength was revealed at approximately 28, 65 and 27 %, respectively, while the tensile and bending modulus were exhibited at approximately 27 and 71 %, respectively, compared to their non-irradiated composite ones. Further characterization of the composites was studied by FTIR (Fourier Transform Infrared) spectroscopy and SEM (Scanning Electron Microscopy) experimentation.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100104"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renan S. Nunes , Gabriela T.M. Xavier , Alessandro L. Urzedo , Pedro S. Fadini , Marcio Romeiro , Wagner A. Carvalho
{"title":"Efficient Phosphorus capture from treated sanitary wastewater using a waste-derived SiO2@FeOOH composite: Robustness, Ca2+ interactions, and recovery perspectives","authors":"Renan S. Nunes , Gabriela T.M. Xavier , Alessandro L. Urzedo , Pedro S. Fadini , Marcio Romeiro , Wagner A. Carvalho","doi":"10.1016/j.nxsust.2024.100091","DOIUrl":"10.1016/j.nxsust.2024.100091","url":null,"abstract":"<div><div>Phosphorus uptake and recovery from sanitary wastewater have been considered a promising approach to producing more sustainable fertilizers, in addition to reducing environmental damage caused by the discharge of this nutrient into water streams. In this study, the Phosphorus adsorption/desorption dynamics exhibited by a tailored SiO<sub>2</sub>@FeOOH adsorbent, produced using quartz sand waste and Fe derived from the acid dissolution of scrap iron, were examined. The adsorbent’s behavior, robustness, and interaction with Ca<sup>2+</sup> ions in simulated treated sanitary wastewater were systematically investigated. As a result, the behavior of the adsorbent under controlled conditions was successfully modeled, and relevant interactions between the material and Ca<sup>2+</sup> ions were identified under simulated conditions. The performance of the adsorbent was not affected by the presence of nitrate, carbonate, sulfate, ammonium, fluoride, and humic substances in the simulated media. Additionally, the composite can adsorb humic substances and Phosphorus simultaneously, without interfering with its Phosphorus adsorption capacity. In simulated treated wastewater, the adsorption of the nutrient was enhanced in the presence of Ca<sup>2+</sup>; however, the formation of insoluble Ca/P deposits on the adsorbent surface significantly changed the adsorption dynamics and disturbed the recovery of Phosphorus using the usual alkaline desorption method. The adsorbent exhibited a robust Phosphorus adsorption capacity as high as 40 mg P/g in simulated treated wastewater, showing clear potential for Phosphorus uptake in Wastewater Treatment Plants. Based on the experimental evidence, future perspectives on the final disposal of the spent adsorbent were also discussed within a circular economy framework.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100091"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143140690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nivaldo G. Pereira Filho, Victoria A. Maia, Rodrigo F.B. de Souza, Almir O. Neto
{"title":"Electrochemical urea degradation and energy co-generation using palladium and iron-based catalysts","authors":"Nivaldo G. Pereira Filho, Victoria A. Maia, Rodrigo F.B. de Souza, Almir O. Neto","doi":"10.1016/j.nxsust.2025.100102","DOIUrl":"10.1016/j.nxsust.2025.100102","url":null,"abstract":"<div><div>Cyclic voltammetry and in-situ ATR-FTIR spectroscopy experiments revealed that urea oxidation occurs through both faradaic direct and indirect mechanisms. The Pd/C electrocatalyst facilitated the formation of formate and NO<sub>x</sub> species, while Fe/C predominantly promoted formate formation via an indirect pathway, attributed to the high activity of iron in water activation. Polarization and power density curves indicated that both electrocatalysts degraded urea with simultaneous energy co-generation, showing comparable activity. Pd/C achieved a power density of 1.3 mW cm⁻², while Fe/C reached 1.1 mW cm⁻². Although Pd/C demonstrated advantages in reaction kinetics, the significantly lower cost of iron positions Fe/C as a promising alternative for practical applications, particularly in direct urea-fed fuel cell reactors. Additionally, Fe/C exhibited 50 % higher urea consumption near the open circuit potential compared to Pd/C, highlighting its potential for the development of more cost-effective and efficient fuel cell designs.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100102"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luxon Nhamo , James Magidi , Sylvester Mpandeli , Onisimo Mutanga , Stanley Liphadzi , Tafadzwanashe Mabhaudhi
{"title":"Drought and flood risk mapping using a GIS-based multi-criteria decision method: A case of the Olifants Basin, South Africa","authors":"Luxon Nhamo , James Magidi , Sylvester Mpandeli , Onisimo Mutanga , Stanley Liphadzi , Tafadzwanashe Mabhaudhi","doi":"10.1016/j.nxsust.2025.100100","DOIUrl":"10.1016/j.nxsust.2025.100100","url":null,"abstract":"<div><div>Droughts and floods are climate extremes of the same hydrological cycle that need to be studied concurrently. In this age of increasing climate risks and uncertainty, droughts and floods have become the most impactful extreme climate events accounting for about 80 % of loss of human life and 70 % of economic losses in sub-Saharan Africa alone. However, research has tended to study the two climate extremes in isolation. In this study, the Analytic Hierarchy Process (AHP), a Multi-criteria Decision Method (MCDM), together with Geographic Information System (GIS) and geostatistical techniques were used to simultaneously detect and assess drought and flood risks in the Olifants River Basin in South Africa. The drought and flood risk maps were delineated and overlaid on the smallest water management units to identify sub-basins at risk of either drought or flooding. Results indicate that low-lying areas are at risk of floods but can resist drought conditions for long periods as water accumulation allows the soils to retain water for prolonged periods. Whereas high-altitude areas quickly show drought stress as the shallow soils on steep slopes are incapable of retaining water for longer periods but are generally at low risk of floods. The mapped drought and flood risk areas agree with historical and topographic data, and satellite-derived indices related to drought and floods. Understanding the close interactions between drought and floods informs inclusive and holistic strategic policy decisions on disaster risk reduction by enhancing preparedness and proactive interventions to these weather extremes.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100100"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recycle sludge incineration ash for efficient preparation of foam concrete: Performance, microstructure, and mechanisms","authors":"Huang Xuquan , Yuhao , Wang Haojie , Xie Xiuqing , Qi Chunbiao , Xue Fei , Zhao Xiaorong","doi":"10.1016/j.nxsust.2025.100125","DOIUrl":"10.1016/j.nxsust.2025.100125","url":null,"abstract":"<div><div>In this paper, the performance of producing foamed concrete by sludge incineration ash(SIA), blast furnace slag(BS) and Portland cement(PO) was investigated. The mixture design in Minitab software was employed to conduct three-component experimental design for SIA, BS and PO and to optimize and determine the optimal component ratio. The influence of two admixtures on the compressive strength and dry density of foamed concrete at different ages was explored. The hardening mechanism of foamed concrete was analyzed by XRD and SEM. With the amount of reactant as the variable, the compressive strength of foam concrete was the expected response. The results of Minitab software showed that the regression coefficient between the variable and the response was very high. The R-sq value of the 7-day compressive strength was 95.03 %, and the 28-day compressive strength was 96.34 % (where R-sq represents the accuracy of the model data fitting; the closer to 100 %, the higher the fitting accuracy). The difference between the measured values and the fitting value was small, indicating that the fitting model performed well. The optimal mix ratio was 30.87 % SIA, 28.65 % BS and 40.48 % PO. Under this condition, the maximum compressive strength of foam concrete were 3.60 MPa (7d) and 9.53 MPa (28d), with corresponding dry densities of 1235 kg/m³ and 1252 kg/m³ . Sludge incineration ash exhibits pozzolanic activity. The reactive SiO<sub>2</sub> and active Fe<sub>2</sub>O<sub>3</sub> contained in it can undergo hydration reactions with cement at room temperature, generating C-S-H gel and insoluble AFt phases. These substances interlocked with each other, forming a dense microstructure that provided early strength to the foam concrete. Considering the effect of admixtures on the performance of foamed concrete, the experimental data demonstrated that the addition of polycarboxylic superplasticizer and sodium sulfate-based early strength agent significantly improved the mechanical properties of foamed concrete.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100125"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143681504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jayant I. Gowda , Rohini M. Hanabaratti , Yuvarajgouda N. Patil , Pandurang D. Pol , Manjunath B. Megalamani , Sharanappa T. Nandibewoor , Adiveppa B. Vantamuri
{"title":"Halonanoclay-carbon paste composite sustainable electrode for electrochemical oxidation and determination of tryptophan","authors":"Jayant I. Gowda , Rohini M. Hanabaratti , Yuvarajgouda N. Patil , Pandurang D. Pol , Manjunath B. Megalamani , Sharanappa T. Nandibewoor , Adiveppa B. Vantamuri","doi":"10.1016/j.nxsust.2025.100126","DOIUrl":"10.1016/j.nxsust.2025.100126","url":null,"abstract":"<div><div>This research aims to develop a sensitive electrochemical technique for detecting and quantifying Tryptophan (TRP), an amino acid, using a carbon paste electrode modified with halonanoclay. The morphology of the prepared electrode was characterized using XRD and SEM techniques. Tryptophan electro-oxidation was investigated primarily using cyclic voltammetry (CV). Systematic studies were conducted to explore the influence of various parameters, such as scan rate, pH, pre-concentration time, modifier quantity, and analyte concentration, on the peak current response of TRP. Tryptophan exhibited an irreversible, well-defined oxidation peak at 0.820 V. Cyclic voltammetry was used to evaluate the effect of scan rate, allowing for the determination of physicochemical parameters, including the heterogeneous rate constant (k⁰) and the number of electrons (n) involved in the electrochemical reaction. Additionally, differential pulse voltammetry was employed to quantitatively analyze pharmaceuticals and human biological fluids. Linearity in detection was observed between 2.0 × 10<sup>-6</sup> M and 50.0 × 10⁻⁶ M, with a limit of detection of 7.77 × 10<sup>–9</sup> M. As a result, the current electrocatalytic method provides a quick, accurate, and simple method to detect TRP in biological medium and pharmaceutical formulations. A sensor with excellent reproducibility, short response times, and outstanding stability has been described as the modified electrode.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100126"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143704191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}