Advances in carbon dioxide capture and conversion technologies: Industrial integration for sustainable chemical production

Okezie Emmanuel , Rozina , Thaddeus C. Ezeji
{"title":"Advances in carbon dioxide capture and conversion technologies: Industrial integration for sustainable chemical production","authors":"Okezie Emmanuel ,&nbsp;Rozina ,&nbsp;Thaddeus C. Ezeji","doi":"10.1016/j.nxsust.2025.100108","DOIUrl":null,"url":null,"abstract":"<div><div>Developing efficient strategies to capture carbon dioxide (CO<sub>2</sub>) is essential to addressing the escalating challenges of global warming. Despite being a major greenhouse gas, CO<sub>2</sub> holds significant potential as a sustainable feedstock for chemical production. It can serve as a solvent, a preservative, a raw material for producing fuels, carbonates, polymers, and chemicals, and as a recovery agent for processes such as enhanced coal bed methane and oil recovery. This review highlights significant progress made in CO<sub>2</sub> capture and its integration into various industrial applications. While technologies such as adsorption, absorption, membrane separation, and cryogenics have shown promise, challenges related to cost, scalability, and the efficiency of capture and utilization continue to pose significant barriers to widespread adoption. Innovative strategies, including integrated carbon capture and conversion (ICCC) and integrated carbon capture and utilization (ICCU), present promising pathways to reduce costs by combining capture and utilization processes within a single facility. Additionally, catalytic processes and biological systems, such as microalgae and microbial strains (e.g., acetogens), are paving the way for sustainable CO<sub>2</sub> conversion into high-value products. Successful large-scale deployment of these technologies will require sustained interdisciplinary collaboration, robust policy frameworks, and increased investment in research and development. Prioritizing sustainable energy development and management offers the potential to significantly reduce anthropogenic CO<sub>2</sub> emissions while creating useful products. Advancing these technologies will not only help in mitigating climate change but also promote the transition to a circular carbon economy, which aligns with global sustainability goals.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100108"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294982362500011X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Developing efficient strategies to capture carbon dioxide (CO2) is essential to addressing the escalating challenges of global warming. Despite being a major greenhouse gas, CO2 holds significant potential as a sustainable feedstock for chemical production. It can serve as a solvent, a preservative, a raw material for producing fuels, carbonates, polymers, and chemicals, and as a recovery agent for processes such as enhanced coal bed methane and oil recovery. This review highlights significant progress made in CO2 capture and its integration into various industrial applications. While technologies such as adsorption, absorption, membrane separation, and cryogenics have shown promise, challenges related to cost, scalability, and the efficiency of capture and utilization continue to pose significant barriers to widespread adoption. Innovative strategies, including integrated carbon capture and conversion (ICCC) and integrated carbon capture and utilization (ICCU), present promising pathways to reduce costs by combining capture and utilization processes within a single facility. Additionally, catalytic processes and biological systems, such as microalgae and microbial strains (e.g., acetogens), are paving the way for sustainable CO2 conversion into high-value products. Successful large-scale deployment of these technologies will require sustained interdisciplinary collaboration, robust policy frameworks, and increased investment in research and development. Prioritizing sustainable energy development and management offers the potential to significantly reduce anthropogenic CO2 emissions while creating useful products. Advancing these technologies will not only help in mitigating climate change but also promote the transition to a circular carbon economy, which aligns with global sustainability goals.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信