Next Sustainability最新文献

筛选
英文 中文
Recent progress on cathode materials for protonic ceramic fuel cells 质子陶瓷燃料电池阴极材料的最新进展
Next Sustainability Pub Date : 2024-01-01 DOI: 10.1016/j.nxsust.2024.100028
Wenwen Zhang, Xiaomin Zhang, Yuefeng Song, Guoxiong Wang
{"title":"Recent progress on cathode materials for protonic ceramic fuel cells","authors":"Wenwen Zhang,&nbsp;Xiaomin Zhang,&nbsp;Yuefeng Song,&nbsp;Guoxiong Wang","doi":"10.1016/j.nxsust.2024.100028","DOIUrl":"https://doi.org/10.1016/j.nxsust.2024.100028","url":null,"abstract":"<div><p>Protonic ceramic fuel cells (PCFCs) have recently garnered significant interest due to their high efficiency and low emissions operating in the intermediate temperature range (400−700 °C). However, due to the lack of efficient key cell materials, especially cathode materials with triple-conducting (O<sup>2−</sup>/H<sup>+</sup>/e<sup>−</sup>) characteristics, the practical application of PCFCs lags behind other energy conversion technologies. Over the past decade, considerable efforts have been devoted to the development of efficient triple-conducting cathode materials, leading to a remarkable progress in PCFCs performance. This review provides a comprehensive summary of the development of cathode materials in PCFCs, including the reaction mechanism, essential cathode material features, regulation strategies, and recent advancements. Challenges and research perspectives in this field are also presented. The focus is on harnessing the fundamental principles of compositional engineering and advanced technologies to provide valuable guidance for the design and development of novel cathode materials for high-performance PCFCs and related fields.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"3 ","pages":"Article 100028"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000059/pdfft?md5=f6d4269d1c74aab91552f029e4a6a7a3&pid=1-s2.0-S2949823624000059-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139731856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of concrete structures durability on its sustainability and climate resiliency 混凝土结构耐久性对其可持续性和气候适应性的影响
Next Sustainability Pub Date : 2024-01-01 DOI: 10.1016/j.nxsust.2024.100025
Adeyemi Adesina , Jieying Zhang
{"title":"Impact of concrete structures durability on its sustainability and climate resiliency","authors":"Adeyemi Adesina ,&nbsp;Jieying Zhang","doi":"10.1016/j.nxsust.2024.100025","DOIUrl":"https://doi.org/10.1016/j.nxsust.2024.100025","url":null,"abstract":"<div><p>Durability property is a critical performance indicator of concrete in different environments and locations. However, durability also plays a key role in the sustainability and climate resiliency of concrete structures which is mostly ignored in the context of ways to improve the sustainability of concrete materials and structures. Hence, this paper aims to bring focus to this area by presenting an overview of the critical role of concrete properties especially durability on the sustainability and climate resiliency of concrete structures. This paper first presents a general overview of concrete materials followed by the connection of concrete to sustainability and climate resiliency. Discussions from this paper indicate that to improve concrete sustainability, there is a need to use materials with lower environmental impacts upfront in addition to producing concrete with improved durability to ensure long-term performance. In other words, merely reducing the upfront embodied carbon of materials is not sufficient to achieve sustainable concrete if the impact of such alternative low-carbon materials used to replace the traditional materials in concrete is not considered. On the other hand, the climate resiliency of concrete structures is mostly dependent on improved durability which would sustain their adaptation over time to the impacts of the changing climate conditions. Overall, to achieve sustainability and climate resilience of concrete structures; lower environmental impact, higher durability performance and resilience to applicable climatic conditions must be achieved.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"3 ","pages":"Article 100025"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000023/pdfft?md5=1a8a0f2cae4a59e456a3c01c34257df6&pid=1-s2.0-S2949823624000023-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140342262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spontaneous formation, gene regulation of Trichoderma and slow decomposition in cocopeat 椰糠中毛霉的自发形成、基因调控和缓慢分解
Next Sustainability Pub Date : 2024-01-01 DOI: 10.1016/j.nxsust.2024.100051
Avinash Sharma , Mainu Hazarika , Punabati Heisnam , Himanshu Pandey , V.S. Devadas , Praveen Kumar , Devendra Singh , Amit Vashishth , Monoj Sutradhar , Rani Jha
{"title":"Spontaneous formation, gene regulation of Trichoderma and slow decomposition in cocopeat","authors":"Avinash Sharma ,&nbsp;Mainu Hazarika ,&nbsp;Punabati Heisnam ,&nbsp;Himanshu Pandey ,&nbsp;V.S. Devadas ,&nbsp;Praveen Kumar ,&nbsp;Devendra Singh ,&nbsp;Amit Vashishth ,&nbsp;Monoj Sutradhar ,&nbsp;Rani Jha","doi":"10.1016/j.nxsust.2024.100051","DOIUrl":"https://doi.org/10.1016/j.nxsust.2024.100051","url":null,"abstract":"<div><p>Cocopeat has various distinguishing properties that encourage the slow decomposition and spontaneous <em>Trichoderma</em> growth. The cocopeat synthesizes responsive chemicals and regulatory mechanisms which assist in the <em>Trichoderma</em> growth. The exact chemical stimulant and efficient mechanisms governing the spontaneous <em>Trichoderma</em> growth in cocopeat remain unknown. The high lignin and cellulose concentration produces actinomycetes and deuteromycetes, which trigger slow decomposition in cocopeat. The chemical components, temperature, pH, nutrients, and aeration all have a direct impact <em>Trichoderma</em> growth and slow decomposition. The chemical constituents lignin, suberin, cutin, pectin, cellulose, and hemicellulose are analyzed with sodium hydroxide solution and examined using scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDAX), fourier transform infrared (FTIR) spectra, x-ray diffraction (XRD), and thermogravimetry. The decomposition dynamics are determined using a mettler thermogravimetric analyzer. Simultaneously thermogravimetry and differential scanning calorimetry are used to examine the stages of decomposition. The decomposition reactions are investigated using the distributed active energy model (DAEM). The glucose Murashige and Skoog (MS) media, chitin Murashige and Skoog (MS) media, Murashige and Skoog (MS) basal media, high-density oligonucleotide microarray, expressed sequence tag-based transcript and Blast2GO suite, hierarchical clustering and heat representation are involved in examination of <em>Trichoderma</em> species. The Upside regulating genes respond to signal transduction, transcription, translation, post-translational modification, and protein folding with the signal transcription factor Pac1 (PacC) for <em>Trichoderma</em> species growth. The dye decolorization assay, genome-wide gene family evolutionary analysis, and whole-genome sequencing were used to discover prospective genes for detecting high or slow decomposition in fungi. The methodologies and technology have the potential to investigate <em>Trichoderma</em> type, response chemicals, and mechanisms underlying <em>Trichoderma</em> growth and slow decomposition in cocopeat.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"4 ","pages":"Article 100051"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294982362400028X/pdfft?md5=2459b0b65ac6efc08de4aa3a532dad6e&pid=1-s2.0-S294982362400028X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141323056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorptive performance of cottonseed cakes biosorbent and derived activated carbon towards Cu2+ ions removal from aqueous solution: Kinetics modelling, isotherms analysis and thermodynamics 棉籽饼生物吸附剂和衍生活性炭对去除水溶液中 Cu2+ 离子的吸附性能:动力学建模、等温线分析和热力学
Next Sustainability Pub Date : 2024-01-01 DOI: 10.1016/j.nxsust.2024.100052
Yowe Kidwe , Djakba Raphaël , Wangmene Bagamla , Mouhamadou Sali , Abia Daouda , Tcheka Constant , Harouna Massai
{"title":"Adsorptive performance of cottonseed cakes biosorbent and derived activated carbon towards Cu2+ ions removal from aqueous solution: Kinetics modelling, isotherms analysis and thermodynamics","authors":"Yowe Kidwe ,&nbsp;Djakba Raphaël ,&nbsp;Wangmene Bagamla ,&nbsp;Mouhamadou Sali ,&nbsp;Abia Daouda ,&nbsp;Tcheka Constant ,&nbsp;Harouna Massai","doi":"10.1016/j.nxsust.2024.100052","DOIUrl":"https://doi.org/10.1016/j.nxsust.2024.100052","url":null,"abstract":"<div><p>Compatible and environmentally clean activated carbon material was prepared via physicochemical method and used for harmful pollutant removal from aqueous solution. The performance of the pristine cottonseed cakes and its activated carbon was examined towards copper ions removal as targeted pollutant through adsorption process. The physicochemical properties of adsorbents were evaluated by numerous experimental techniques such as Fourier transform infra-red spectroscopy, Raman spectroscopy, scanning electron microscopy, the point of zero charge, iodine number and specific surface area. The effect of several key operational parameters such as contact time, adsorbent dose, pH, concentration and temperature were considered. Results of the adsorption tests exhibited significant sensitivity towards copper ions elimination at optimum conditions; the copper uptake capacity was enhanced with time up to equilibrium of 30 min with a minimum adsorbent dose of 0.1 g at alkaline pH of 10 for maximum concentration of 50 mg/L at room temperature (25 °C) and achieved appropriate adsorbed quantities of 51.56 mg/g for cottonseed cakes activated carbon (CCAC) and 48.5 mg/g for cottonseed cakes biosorbent (CCB). The values of point of zero charge are 2.63 and 6.32 for CCB and CCAC respectively which present high electrostatic attraction between positive charge of copper ions and negative charge of the surface at basic medium. Iodine number of 30.35 and 41.92 mg/g indicates random distribution of micropores. The specific surface area of CCAC (30.35 m<sup>2</sup>/g) is higher than the one of CCB (11.94 m<sup>2</sup>/g). FTIR shows good surface chemistry with various functional groups while Raman spectroscopy and SEM analyses revealed myriad morphological features and carbon phases (graphite and diamond). The adsorption of copper ions was described by pseudo second order kinetic model and favoured by Redlich Peterson isotherm corresponding to physisorption on CCB while the one CCAC involves chemical bonding and can be qualified as chemisorption mechanism as confirm by ΔH° of both materials.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"4 ","pages":"Article 100052"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000291/pdfft?md5=403ff05ed279b1ab71a6b34606df5472&pid=1-s2.0-S2949823624000291-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance scrutiny of spent lithium-ion batteries cathode material as a catalyst for oxidation of benzyl alcohol 废锂离子电池正极材料作为苯甲醇氧化催化剂的性能检测
Next Sustainability Pub Date : 2024-01-01 DOI: 10.1016/j.nxsust.2023.100017
Bogalera Papaiah Shivamurthy , Swapnali P. Kirdant , Sudeep Katakam , Purnima Rawat , Vrushali H. Jadhav , Girish Praveen Nayaka
{"title":"Performance scrutiny of spent lithium-ion batteries cathode material as a catalyst for oxidation of benzyl alcohol","authors":"Bogalera Papaiah Shivamurthy ,&nbsp;Swapnali P. Kirdant ,&nbsp;Sudeep Katakam ,&nbsp;Purnima Rawat ,&nbsp;Vrushali H. Jadhav ,&nbsp;Girish Praveen Nayaka","doi":"10.1016/j.nxsust.2023.100017","DOIUrl":"10.1016/j.nxsust.2023.100017","url":null,"abstract":"<div><p>The widespread use of Li-ion batteries (LIBs) in energy storage devices has resulted in the generation of additional waste which contains valuable metal ions and these metal ions are well known for their catalytic activities. The recovered black mass of cathode material was exposed to pretreatment with final calcination for 2 h at 800 <sup>0</sup>C. After the calcination, the material was subjected to structural characterization (XRD, FE-SEM, EDAX, and XPS). In the present work, we have used spent LIBs cathode material as a catalyst for the oxidation reaction of benzyl alcohol to benzoic acid. The catalytic activity of this recovered cathode material was found to be highly efficient showing 100% conversion of benzyl alcohol with &gt;99% selectivity of benzoic acid with lower catalyst loading of even 2%.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"3 ","pages":"Article 100017"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294982362300017X/pdfft?md5=b2b80cce0a484996df1bf87ee18c1720&pid=1-s2.0-S294982362300017X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139020848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studies on combustion synthesized ZnO and ZnO@ZrO2 nanocomposites for dye contaminated wastewater treatment 燃烧合成 ZnO 和 ZnO@ZrO2 纳米复合材料用于染料污染废水处理的研究
Next Sustainability Pub Date : 2024-01-01 DOI: 10.1016/j.nxsust.2024.100053
Abhijit S. Landge , Abbas S. Pathan , Shivaji V. Bhosale , Yogesh V. Hase , Tukaram R. Gaje , Vijay B. Autade , Sandesh R. Jadkar , Sandeep A. Arote
{"title":"Studies on combustion synthesized ZnO and ZnO@ZrO2 nanocomposites for dye contaminated wastewater treatment","authors":"Abhijit S. Landge ,&nbsp;Abbas S. Pathan ,&nbsp;Shivaji V. Bhosale ,&nbsp;Yogesh V. Hase ,&nbsp;Tukaram R. Gaje ,&nbsp;Vijay B. Autade ,&nbsp;Sandesh R. Jadkar ,&nbsp;Sandeep A. Arote","doi":"10.1016/j.nxsust.2024.100053","DOIUrl":"https://doi.org/10.1016/j.nxsust.2024.100053","url":null,"abstract":"<div><p>In this study, zinc oxide (ZnO) and zinc oxide-zirconium dioxide nanocomposites (ZnO@ZrO<sub>2</sub>) were synthesized by a low-cost solution combustion route to study their structural, morphological, optical, and photocatalytic performance. The properties of synthesized nanocomposites were characterized by x-ray diffraction (XRD), UV–vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Phase formation and purity were confirmed using XRD and EDS. Optical absorption spectra revealed that the addition of ZrO<sub>2</sub> significantly affected optical absorption and band gap energy. The band gap energy increased from 3.01 to 3.24 eV with addition of ZrO<sub>2</sub> in ZnO. FTIR spectra confirmed the formation of ZnO and ZnO@ZrO<sub>2</sub>. SEM micrographs showed a significant change in the morphology of the ZrO<sub>2</sub> addition in ZnO. BET analysis showed surface area for sample P3 ([email protected]<sub>2</sub>) was 28.9 m<sup>2</sup>/g while for sample P1 (ZnO) was 22.5 m<sup>2</sup>/g. In addition, the photocatalytic performance of ZnO and ZnO@ZrO<sub>2</sub> for the decomposition of methylene blue (MB) dye was studied for all samples exposed to solar light. The effect of different contents of ZrO<sub>2</sub> in ZnO@ZrO<sub>2</sub> in terms of degradation efficiency and degradation time are described in detail. The sample P3 showed highest photodegradation efficiency of 84.52 % at degradation time of 240 minutes.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"4 ","pages":"Article 100053"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000308/pdfft?md5=36020c9b79d4d2b85a354c05a661e56f&pid=1-s2.0-S2949823624000308-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141323057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Red chemistry: Principles and applications 红色化学:原理与应用
Next Sustainability Pub Date : 2024-01-01 DOI: 10.1016/j.nxsust.2024.100048
Swapnil L. Fegade
{"title":"Red chemistry: Principles and applications","authors":"Swapnil L. Fegade","doi":"10.1016/j.nxsust.2024.100048","DOIUrl":"https://doi.org/10.1016/j.nxsust.2024.100048","url":null,"abstract":"<div><p>There is a growing concern regarding the lack of sufficient justification for claims of \"greenness\" in research studies. This concern has sparked heated debates and prompted calls for mandatory discussions on adherence to green chemistry principles in studies that assert environmental friendliness. In response to this pressing issue, the present study introduces the ‘12 Principles of Red Chemistry’. These principles outline methodologies that prioritize immediate but risky chemical objectives over broader ecological considerations. Through the presentation of case studies, this discussion vividly illustrates the non-sustainability inherent in red chemistry practices. While green chemistry advocates for sustainable and environmentally responsible practices, red chemistry prioritizes short-term gains without adequate consideration for long-term environmental impacts. This contrast highlights the significance of green chemistry principles in guiding the chemical industry towards a more sustainable future. The comprehensive discussion on the Principles of Red chemistry serves as a guiding framework for understanding and evaluating the red chemical processes, emphasizing their potential risks and ecological impacts.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"4 ","pages":"Article 100048"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000254/pdfft?md5=d214ffd9aec3eb2ff300017208de31e6&pid=1-s2.0-S2949823624000254-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140947781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Building integrated photovoltaic-thermal systems (BIPVT) and spectral splitting technology: A critical review 光伏-热建筑一体化系统(BIPVT)和分光技术:重要综述
Next Sustainability Pub Date : 2024-01-01 DOI: 10.1016/j.nxsust.2024.100056
Xin Ma , Aritra Ghosh , Erdem Cuce , Shaik Saboor
{"title":"Building integrated photovoltaic-thermal systems (BIPVT) and spectral splitting technology: A critical review","authors":"Xin Ma ,&nbsp;Aritra Ghosh ,&nbsp;Erdem Cuce ,&nbsp;Shaik Saboor","doi":"10.1016/j.nxsust.2024.100056","DOIUrl":"https://doi.org/10.1016/j.nxsust.2024.100056","url":null,"abstract":"<div><p>Solar energy is an effective means of reducing global greenhouse gas emissions. This review provides an overview of building-integrated photovoltaic thermal (BIPVT) systems, highlighting their potential advantages and challenges. The goal is to evaluate how BIPVT systems can improve energy efficiency, cost-effectiveness, and sustainability. This article provides a comprehensive study of various BIPVT systems and spectral splitting techniques and discusses the performance and efficiency of different BIPVT applications. Additionally, this review analyzes the factors that influence the design, installation, and maintenance of BIPVT systems, as well as the economics, feasibility, and market potential of BIPVT systems. The results show that BIPVT systems have significant promise in improving photovoltaic (PV) module electrical efficiency, system thermal efficiency and reducing energy consumption, thus contributing to climate change mitigation. However, its high initial installation cost compared to traditional heating and cooling systems or stand-alone solar systems remains a major barrier to widespread adoption. To enhance market dynamism, further research and development work is required to improve performance and efficiency, reduce installation costs and overcome existing technical challenges.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"4 ","pages":"Article 100056"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000333/pdfft?md5=83143cf9e827641857cee71f250c884d&pid=1-s2.0-S2949823624000333-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141540217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable passive solar and photovoltaic integrated technology interventions for climate responsive net zero energy buildings in western Himalayan mountainous terrain of India 在印度喜马拉雅西部山区采用可持续被动式太阳能和光伏发电综合技术,建造适应气候的净零能耗建筑
Next Sustainability Pub Date : 2024-01-01 DOI: 10.1016/j.nxsust.2024.100039
Rahul Chandel , Shyam Singh Chandel , Deo Prasad , Ram Prakash Dwivedi
{"title":"Sustainable passive solar and photovoltaic integrated technology interventions for climate responsive net zero energy buildings in western Himalayan mountainous terrain of India","authors":"Rahul Chandel ,&nbsp;Shyam Singh Chandel ,&nbsp;Deo Prasad ,&nbsp;Ram Prakash Dwivedi","doi":"10.1016/j.nxsust.2024.100039","DOIUrl":"https://doi.org/10.1016/j.nxsust.2024.100039","url":null,"abstract":"<div><p>The global warming concerns, greenhouse gas emission reduction, are not being addressed effectively in the energy-consuming building sector worldwide. This study presents a novel approach of solar technology interventions for sustainable buildings namely rooftop photovoltaic systems, use of carbon-free sustainable building materials, and passive solar heating systems. A methodology for achieving net zero energy and zero carbon emission buildings is described. This strategy is being implemented to develop an educational institution as a sustainable campus in a Western Himalayan cold region of India. The results show an energy yield of 1561 kWh/kWp/year from a proposed photovoltaic power system for a typical building at this location producing 10,928 kWh avoiding 7.7 t-CO<sub>2</sub> emissions which means the system will produce enough electricity in 2.6 years to offset the amount of carbon emissions during manufacturing of PV modules. The modeling and simulation analysis using the developed mathematical model shows that the space heating system provides 37–56 % of total energy needs with a payback period of 3.5–5.8 years depending on the type of six different construction materials used. The innovative mandatory policy and solar technology interventions implemented can be followed in remote rural and semi-urban areas in developing countries.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"3 ","pages":"Article 100039"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000163/pdfft?md5=8e80e1698310c794263d3d083bfa48af&pid=1-s2.0-S2949823624000163-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140637960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic gasification of municipal solid waste using eggshell-derived CaO catalyst: An investigation of optimum H2 production, production distribution, and tar compounds 使用源自蛋壳的 CaO 催化剂催化气化城市固体废物:对最佳 H2 产量、产量分布和焦油化合物的研究
Next Sustainability Pub Date : 2024-01-01 DOI: 10.1016/j.nxsust.2024.100038
Azhar Ali Laghari , Imtiaz Ali Jamro , Akash Kumar , Guanyi Chen , Shahdev Sajnani , Zhangzhen Guo , Yongheng Shen , Junzhe Zhang , Salim Khoso , Qingxia Guo , Wenchao Ma
{"title":"Catalytic gasification of municipal solid waste using eggshell-derived CaO catalyst: An investigation of optimum H2 production, production distribution, and tar compounds","authors":"Azhar Ali Laghari ,&nbsp;Imtiaz Ali Jamro ,&nbsp;Akash Kumar ,&nbsp;Guanyi Chen ,&nbsp;Shahdev Sajnani ,&nbsp;Zhangzhen Guo ,&nbsp;Yongheng Shen ,&nbsp;Junzhe Zhang ,&nbsp;Salim Khoso ,&nbsp;Qingxia Guo ,&nbsp;Wenchao Ma","doi":"10.1016/j.nxsust.2024.100038","DOIUrl":"https://doi.org/10.1016/j.nxsust.2024.100038","url":null,"abstract":"<div><p>This study reports the optimum hydrogen (H<sub>2</sub>) production from municipal solid waste (MSW) via waste eggshell derived-CaO catalyst through gasification technology. The response surface model was applied to design the experiments and the data validation. Results showed that CaO catalyst had a better performance that enhanced 15 mol% more H<sub>2</sub> production than non-catalytic gasification by mainly involving reaction temperature and catalyst loading as the critical parameters. Tar content was efficiently declined from 11.34 wt. % to 4.7 , wt. %, which ultimately elevated the H<sub>2</sub> and syngas from 33.95 mol% to 51.27 mol% and 74.05 to 83.4674.05–83.46 wt. %, respectively. The model showed a strong interaction among the statistical parameters verified through the regression values; R<sup>2</sup> = 0.990, P-value = 0.000005, respectively. Scanning electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller techniques investigated the catalyst's structure hence; presented comparable results. From tar analysis, the aromatics were found as the dominant family followed by polycyclic aromatic, phenyls, aliphatic, aromatic heterocyclic, polycyclic, and aromatic ketones. Optimum H<sub>2</sub> production of 51.27 mol% (with H<sub>2</sub>/CO ratio 2.82, LHV 9.47 MJ/Nm<sup>3,</sup> and H<sub>2</sub> yield 22.74 mol kg-MSW<sup>−1</sup>) was produced which can be a better alternative to depleting fossil fuels and utilized for liquid fuel manufacturing and power generation.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"4 ","pages":"Article 100038"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000151/pdfft?md5=86e790340204d9892f13f7d1ffbce807&pid=1-s2.0-S2949823624000151-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140645430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信