Utibe A. Ofon , Uduak U. Ndubuisi-Nnaji , Anthony A. Adegoke , Nnanake-Abasi O. Offiong , Ogechi P. Ewenike , Solomon E. Shaibu
{"title":"Bioenergy potential of paper waste: Fungal pretreatment and kinetics modelling","authors":"Utibe A. Ofon , Uduak U. Ndubuisi-Nnaji , Anthony A. Adegoke , Nnanake-Abasi O. Offiong , Ogechi P. Ewenike , Solomon E. Shaibu","doi":"10.1016/j.nxsust.2024.100086","DOIUrl":"10.1016/j.nxsust.2024.100086","url":null,"abstract":"<div><div>Using the fungi <em>Phanerochaete chrysosporium</em> and <em>Aspergillus niger</em> as a biopretreatment agent to improve degradation of lignocellulosic paper with analogous increase in biogas production, anaerobic digestion (AD) was executed. Milled and hydrothermally-treated (HT) or steamed paper were separately inoculated for 360 hr at 28 °C with each fungal species, with an uninoculated treatment as control. AD experiment was conducted in bench-scale batch bioreactors for 48 days at 40°C. The initial characteristics of the feedstock and inoculum were examined in addition to biomethane yield, total and volatile solids degradation, and lignocellulosic content removal. The pretreatment of milled paper with <em>P. chrysosporium</em> resulted in the highest biogas yield of 1035 mL/gVS, followed by <em>A. niger</em> with a yield of 550 mL/gVS. These values represented a significant increase (p < 0.05) of 226 % and 73 % compared to the untreated feedstock, respectively. <em>P. chrysosporium</em> pretreatment achieved the highest total solids removal of 66.85 %, whereas <em>A. niger</em> pretreatment resulted in the maximum volatile solids removal of 64.63 % in HT-paper waste. <em>P. chrysosporium</em> also exhibited the highest lignin removal efficiency, with 84.31 % in milled feedstock and 79.17 % in the steamed state. <em>A. niger</em> showed 77.28 % and 67.09 % lignin removal in the milled and HT paper, respectively. The study demonstrated that pretreatment with <em>P. chrysosporium</em> and <em>A. niger</em> significantly (p<0.05) improved biogas production by facilitating the biodegradation of lignocellulosic components. All measured biomethane data from experiments fitted adequately to the modified Gompertz model with R<sup>2</sup> ranging from 0.97 to 0.99.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100086"},"PeriodicalIF":0.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maxime Léger , Andrea La Monaca , Niladri Basu , George P. Demopoulos
{"title":"Alternatives assessment of polyvinylidene fluoride-compatible solvents for N-methyl pyrrolidone substitution in lithium-ion battery cathodes","authors":"Maxime Léger , Andrea La Monaca , Niladri Basu , George P. Demopoulos","doi":"10.1016/j.nxsust.2024.100084","DOIUrl":"10.1016/j.nxsust.2024.100084","url":null,"abstract":"<div><div>Lithium-ion batteries (LIBs) are central to electrification yet, to increase the efficiency and scalability of electric systems, energy storage technologies must integrate sustainability concepts into their design. Notably, the incumbent LIB technology uses the reprotoxic solvent N-methyl pyrrolidone (NMP) to dissolve polyvinylidene fluoride (PVdF) as a binder. This solvent, of concern to human and ecological health, must be replaced with less toxic alternatives. Accordingly, the objective of this study was to determine which potential solvents, compatible with PVdF binder within the cathode processing of LIBs, could replace NMP. This study followed the U.S. National Research Council’s <em>Framework to Guide Selection of Chemical Alternatives,</em> and thus assembled and compared data concerning ecological and human hazards, performance, and cost. Five solvents were assessed as alternatives to NMP, derived from an analysis of 948 cells of data (708 cells of hazard data, 54 cells of performance data, and 186 cells of cost data). Triethyl phosphate (TEP) and N-N’-dimethylpropyleneurea (DMPU) are found to exhibit reprotoxic properties, and dimethylsulfoxide (DMSO) raised concerns in all three data categories studied. The most promising alternatives to NMP were dihydrolevoglucosenone (Cyrene) and γ-valerolactone (GVL). With demand for sustainable energy storage growing, the results of this study aim to guide research and innovation of LIB technologies while avoiding regrettable substitutions in developing NMP-free LIBs.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100084"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John D. Chea , Gerardo J. Ruiz-Mercado , Raymond L. Smith , Michael A. Gonzalez , David E. Meyer
{"title":"Sustainability assessment of additive manufacturing end-of-life material management","authors":"John D. Chea , Gerardo J. Ruiz-Mercado , Raymond L. Smith , Michael A. Gonzalez , David E. Meyer","doi":"10.1016/j.nxsust.2024.100085","DOIUrl":"10.1016/j.nxsust.2024.100085","url":null,"abstract":"<div><div>Additive manufacturing (AM) methods enable complex, customized, and on-demand production of many products from different material types across various industries. The growing demand for flexible and more sustainable manufacturing solutions places AM in the mix of processes considered for non-commodities. However, AM processes also present unintentional environmental releases in end-of-life (EoL) material management, compromising overall sustainability. Data availability to assess the sustainability of individual EoL material management from individual AM processes is limited. Even so, EoL materials generated across AM practices frequently overlap, supporting high-level assessment as an alternative approach. Therefore, a holistic AM EoL material management sustainability analysis was completed using a customized list of efficiency, environmental, energy, and economic indicators from the <u>G</u>auging <u>R</u>eaction <u>E</u>ffectiveness for the <u>E</u>nvironmental <u>S</u>ustainability of <u>C</u>hemistries with a multi-<u>O</u>bjective <u>P</u>rocess <u>E</u>valuator (GREENSCOPE) methodology. Subsequently, this assessment identified low material recycling rates and high energy costs in some EoL material management processes, such as incineration and recovery. Subsequently, a trade-off analysis was performed to determine process modification opportunities, including implementing recycling to reduce the amount of hazardous waste at the expense of additional energy and cost investment. The AM EoL-specific sustainability analysis serves as a resource to offer insights and empower policymakers and stakeholders to enhance pollution prevention strategies and optimize the existing EoL material management processes.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100085"},"PeriodicalIF":0.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kenyi Ho , Sie Yon Lau , Ling Hui Ting , Abdul Zahir , Man Kee Lam , Sook Yan Choy , Steven Lim , Tan Inn Shi
{"title":"Review of starch-based coagulants for water treatment: Mechanisms, extraction and surface modification","authors":"Kenyi Ho , Sie Yon Lau , Ling Hui Ting , Abdul Zahir , Man Kee Lam , Sook Yan Choy , Steven Lim , Tan Inn Shi","doi":"10.1016/j.nxsust.2024.100083","DOIUrl":"10.1016/j.nxsust.2024.100083","url":null,"abstract":"<div><div>As the UN Sustainable Development Goal 6 emphasizes, sustainable and equitable access to clean water is paramount to improving public health and minimizing waterborne disease transmission. Due to rapid urbanization and population growth, freshwater resources are depleted, and approximately two-thirds of the world’s population will experience severe water scarcity by 2050. The coagulation-flocculation method demonstrates a viable solution for water treatment due to the minimal technical requirements, short treatment duration, and low material cost. Recently, starch-based coagulants have garnered significant attention due to their non-toxic nature, abundance, and cost-effectiveness. However, the coagulation efficiency of starch can be further enhanced through surface modification. The performance efficiency of starch-based coagulants largely depends on the modification technique, as it may influence the density of the surface charge. This review paper comprehensively discusses the coagulation mechanism of starch-based coagulants and the distinct methods for starch extraction. The removal efficacy of starch-based coagulants primarily depends on various physicochemical properties such as surface functional groups, zeta potential, and the elemental and morphological properties of the coagulant. Tailoring these properties is essential for developing a promising starch-based coagulant capable of effectively removing pollutants from water. Finally, the future prospects of starch-based coagulants are provided to highlight the exciting opportunities for sustainable water treatment and alignment with circular economy principles.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100083"},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Use of EDS/EDX to evaluate heavy metals pollution in water sources","authors":"Michel Mutabaruka , Aditya Rana","doi":"10.1016/j.nxsust.2024.100082","DOIUrl":"10.1016/j.nxsust.2024.100082","url":null,"abstract":"<div><div>The objective of the study was to evaluate the role of brick kilns in contaminating water bodies with heavy metals in Punjab, India. The energy-dispersive x-ray spectroscopy (EDS/EDX) machine effectively tested heavy metals in water samples. The research revealed that the surface water near the brick kilns was extensively polluted with heavy metals. Their Pollution Load Index (PLI) values varied between 2.83 and 52.98, and their degree of contamination was “Progressive deterioration”. The PLI values for groundwater ranged between 0.089 and 3.68, and the degree of contamination varied from “Baseline levels of pollutants” to “Progressive deterioration”. In general, the groundwater of the studied area had a PLI value of 0.477 (Baseline levels of pollutants), whereas the surface water had a PLI value of 11.453 (Progressive deterioration). The Water Quality Index (WQI) of groundwater was highly influenced by heavy metals, notably Arsenic (As) from lithologic origins, and Lead (Pb) from the burning of fuels in the brick kilns. In descending order, Pb>Zn>As>Cr>Ni metals were influencing the PLI, and the correlation matrixes demonstrated that the presence of heavy metals was associated with the PLI and WQI values. Therefore, there is evidence that brick kilns are polluting water bodies with heavy metals. EDS proved to be one of the instruments to evaluate the chemical elements in water. It was recommended to enforce the law governing the use of biomass to reduce vast quantities of coal used in baking bricks.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100082"},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B.S. Teti , A.L.M. Amorim , E.C. Costa , N.B. Lima , K.G.B. Alves , N.B.D. Lima
{"title":"Incorporating industrial residue of submerged arc welding (SAW) in cement-based mortar matrices as a green strategy","authors":"B.S. Teti , A.L.M. Amorim , E.C. Costa , N.B. Lima , K.G.B. Alves , N.B.D. Lima","doi":"10.1016/j.nxsust.2024.100080","DOIUrl":"10.1016/j.nxsust.2024.100080","url":null,"abstract":"<div><div>The construction industry, a key player in the fight against greenhouse gas emissions and solid waste generation, is actively seeking sustainable solutions to mitigate environmental impacts. This study investigates the technical feasibility of incorporating submerged arc slag, a byproduct rich in calcium and silicon oxides, into the mechanical properties of mortars. Three mixtures with a water/cement ratio of 1.4 were prepared: a reference mixture, one with the addition of 10 % slag, and another with 10 % cement replaced by slag. Compressive strength tests were carried out at 7, 14, and 28 days and revealed average losses of 12.4 %, 18.9 %, and 22.9 % in the mixture with replaced cement, while the mixture with slag addition showed lower losses of 2.6 %, 4.9 %, and 5.3 %. Although partial replacement of cement affects strength, levels remain within regulatory limits, and slag contributes to reducing CO<sub>2</sub> emissions, minimizes waste generation, and promotes the valorization of industrial byproducts. This study underscores the role of the construction industry in mitigating environmental impacts and the potential of submerged arc slag as a sustainable and effective alternative, balancing mechanical performance and environmental impact in civil construction.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100080"},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kuldeep K. Garg , Sandeep Pandey , Lata Pandey , Amit Kumar , Aniket Rana , Shubhi Madan , Nanda Gopal Sahoo , S.K. Dhawan , Rajiv K. Singh
{"title":"Copper-catalyzed plastic waste synthesized graphene nanosheets/polypyrrole nanocomposites for efficient thermoelectric applications","authors":"Kuldeep K. Garg , Sandeep Pandey , Lata Pandey , Amit Kumar , Aniket Rana , Shubhi Madan , Nanda Gopal Sahoo , S.K. Dhawan , Rajiv K. Singh","doi":"10.1016/j.nxsust.2024.100081","DOIUrl":"10.1016/j.nxsust.2024.100081","url":null,"abstract":"<div><div>Presently, various catalysts have been reported for the synthesis of carbon nanomaterials from a variety of plastic waste, which needs to be removed at the end of the synthesis process by using chemical techniques and hence make the process more typical from the aspect of cost-benefit and circular economic aspects. Herewith, we report copper turnings as the cost-effective and greener catalytic templates for synthesizing highly conducting graphene nanosheets (GNs). The synthesis of the GNs from plastic waste was done as we previously reported in the steps of the pyrolytic process, where the copper turnings are used as catalytic templates in the present study. Because of the excellent catalytic efficiency towards breaking old carbon-carbon bonds and forming new carbon-carbon bonds, the copper turnings act as an excellent degradation catalyst and promote the growth of graphitic skeletons and, consequently, graphene nanosheets. The synthesized GNs showed a high conductivity of ∼ 1730 S/m. GNs thus synthesized is implemented for synthesizing GNs/polypyrrole nanocomposites, which is later investigated for the TE applications. The values of the Seebeck coefficient showed that the composite of GNs/polypyrrole performs as a p-type semiconductor. The TE figure of merit (ZT) for GNs/polypyrrole demonstrated good thermoelectric characteristics and showed a value of 3.75 × 10<sup>−6</sup> at the temperature. Thus, the present method of synthesis of GNs showed a more convenient, industrial friendly technique for the production of plastic waste derived graphene nanosheets and its application for thermal energy conversion applications.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100081"},"PeriodicalIF":0.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Felippe Pereira Ribeiro , Olubimbola Oladimeji , Marcos Barreto de Mendonça , Dieter Boer , Rashid Maqbool , Assed N. Haddad , Mohammad K. Najjar
{"title":"BIM-based parametric energy analysis of green building components for the roofs and facades","authors":"Felippe Pereira Ribeiro , Olubimbola Oladimeji , Marcos Barreto de Mendonça , Dieter Boer , Rashid Maqbool , Assed N. Haddad , Mohammad K. Najjar","doi":"10.1016/j.nxsust.2024.100078","DOIUrl":"10.1016/j.nxsust.2024.100078","url":null,"abstract":"<div><div>Buildings are distinguished by their high energy demand over their lifespan. Iimproving energy efficiency in buildings necessitates mitigating the operation energy performance by evaluating more sustainable building components such as green infrastructures. The novelty herein is to conduct a BIM-based parametric energy analysis of green building components for the roofs and facades, taking into consideration the climate classification and orientation of the building. The proposed framework of this study uses Autodesk Revit software and Autodesk Green Building Studio as BIM tools, and Minitab software as a parametric analysis tool to estimate the energy performance of several alternative components based on Energy Use Intensity (EUI) and Annual Peak Demand (APD). A case study of a residential building is examined in four cities within different climate zones in Brazil; Rio de Janeiro (climate zone 08), Macaé (climate zone 05), Petrópolis (climate zone 03), and Nova Friburgo (climate zone 02). The base model design of components of the building includes a reinforced concrete roof and ceramic masonry façade. The utilized alternatives are roof components (i.e. green roofs and expanded clay roofs), and green façade. This work insight using green façade for all elevations and green roofs to enhance energy efficiency in terms of EUI by (10,17 %) in Rio de Janeiro, (6,67 %) in Macaé, (11,43 %) in Pertópolis, and (16,43 %) in Nova Friburgo. While the efficiency in terms of APD would be about (28,07 %) in Rio de Janeiro, (22,79 %) in Macaé, (21,67 %) in Pertópolis, and (12,58 %) in Nova Friburgo. When the construction project is designed to install a green façade to the main elevation only, this work recommends using green roofs rather than the expanded clay roof or the base model design roofs to increase energy efficiency in such types of buildings. This work contributes to integrating green building components into building designs to improve energy efficiency and empower decision-making and sustainability in buildings.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100078"},"PeriodicalIF":0.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combination of the degrading bacterium Bacillus cereus MZ-1 and corn straw biochar enhanced the removal of imazethapyr from water solutions","authors":"Jingbo Miao, Qingqing Fan, Hao Li, Yong Yang, Qingming Zhang","doi":"10.1016/j.nxsust.2024.100077","DOIUrl":"10.1016/j.nxsust.2024.100077","url":null,"abstract":"<div><div>Long residual herbicide imazethapyr has caused a serious threat to subsequent sensitive crop plants and ecological security. Efficient immobilized microorganism technology offers a sustainable solution for remediating pesticides contamination. In this study, three corn straw biochars produced at 300℃, 500℃, and 700℃ were used as carriers to immobilize the imazethapyr degrading strain <em>Bacillus cereus</em> MZ-1, aiming to efficiently remove imazethapyr from the water environment. Response surface methodology was employed to optimize the best immobilization conditions based on the efficiency of imazethapyr removal. The results indicate that the biochar produced at 500 ℃ was the most effective carrier for immobilization, despite having a lower imazethapyr removal capacity compared to the biochar produced at 700 ℃. Additionally, the optimal strain addition amount was a suspension of strain MZ-1 (OD<sub>600</sub>=1) in a 3.5-fold biochar solution, and the best immobilized time was 18 h. The prepared immobilized MZ-1 achieved a maximum imazethapyr removal efficiency of 79.85 %. Moreover, the immobilized MZ-1 demonstrated enhanced detoxification efficacy against imazethapyr-induced harm in sensitive oilseed rape crops, surpassing the effects of using MZ-1 or biochar alone. Results of this work suggests biochar immobilized degradation strain MZ-1 is a highly effective in-situ remediation strategy for bioremediation of imazethapyr contamination.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100077"},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sabyasachi Rout , Sonali Yadav , Lipika G. Pansare , R. Shashidhar , Vandana Pulhani , A. Vinod Kumar
{"title":"Simultaneous removal of heavy metals and Escherichia coli from water using silver-doped hydroxyapatite-coated activated carbon nano composite-alginate beads","authors":"Sabyasachi Rout , Sonali Yadav , Lipika G. Pansare , R. Shashidhar , Vandana Pulhani , A. Vinod Kumar","doi":"10.1016/j.nxsust.2024.100076","DOIUrl":"10.1016/j.nxsust.2024.100076","url":null,"abstract":"<div><div>The scarcity of clean water due to heavy metal and microbial contamination is a global issue. In many parts of the world, heavy metals such as Pb, Cd, and U, along with bacteria like <em>Escherichia coli</em>, have been found to exceed permissible limits in groundwater and other water sources that the public depends on for daily drinking water. To address this, we have synthesized a novel composite material consisting of Ag-impregnated hydroxyapatite-coated activated carbon nanoparticles embedded in alginate beads, for the simultaneous removal of heavy metals (U, Pb, and Cd) and <em>Escherichia coli</em> from drinking water. The material's efficiency was evaluated through a series of batch and column experiments. Batch studies indicate 90 % sequestration of U within 5 hours and Pb and Cd within 7 hours, while <em>Escherichia coli</em> (10<sup>7</sup> cfu/mL) was eradicated instantly. The study confirms that sorption follows pseudo-second-order kinetics via chemisorption and ion-exchange mechanisms. Fixed-bed column studies, using a logistic growth model, showed strong agreement between theoretical and experimental parameters for the Bohart-Adams, Thomas, and Yoon-Nelson models. The beads demonstrated a high affinity for heavy metals, achieving complete removal and disinfection within an empty bed contact time of 1.12 minutes. Reusability studies indicate that even after the third regeneration and reuse cycle, removal efficiency remained about 95 % for U and Pb, and 85 % for Cd. Furthermore, the effects of variations in water quality parameters such as pH, dissolved carbonates, humic acid, and ionic strength (except for Cd) on removal efficiency were minimal. In summary, the study revealed that the Ag-impregnated hydroxyapatite-coated activated carbon nanoparticles embedded in alginate beads are an efficient, sustainable, and cost-effective material for the simultaneous removal of Pb, Cd, U, and <em>Escherichia coli</em> from water with diverse physicochemical properties.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100076"},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}