高粱渣预处理及酶解工艺优化生产生物乙醇的研究:酿酒酵母与毕赤酵母共培养发酵方法

Pallavi Punia, Sumeet Kumar
{"title":"高粱渣预处理及酶解工艺优化生产生物乙醇的研究:酿酒酵母与毕赤酵母共培养发酵方法","authors":"Pallavi Punia,&nbsp;Sumeet Kumar","doi":"10.1016/j.nxsust.2025.100131","DOIUrl":null,"url":null,"abstract":"<div><div>The co-utilization of pentose and hexose in lignocellulosic biomass hydrolysate is the core for economically fermentative production of the second-generation bioethanol as a sustainable biofuel candidate. In this research, the production of bioethanol by co-culturing <em>S. cerevisiae</em> (MTCC174) and <em>P. stipitis</em> (NCIM 3497) with the SHF (separate hydrolysis and fermentation) process was reported. Enzymatic the saccharification process for fermentable sugars is induced by NaOH pre-treated SSR, as evidenced by the data. The optimal Box-Behnken Design parameters for pre-treated and hydrolyzed SSR were reported with 2 % concentration of NaOH, 1 mm with particle size, and 50 min duration were explored and showed a maximum cellulose concentration of 62.7 % as a response. The variables investigated in the model for hydrolysis found the maximal concentration of reducing sugar of 42.7 ± 2.117 mg/g, at ∼50℃ with 1:2 enzymes loading at a time of ∼72hrs. The physical and structural analysis can be done with FTIR, XRD, and FESEM techniques. The highest concentration of bioethanol of 16.8 g/L was attained in 72hrs fermentation time. The study infers that SHF has great potential for producing high-titer ethanol commercially and supports waste-to-energy strategies.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100131"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of bioethanol production from sorghum residue by optimization of pre-treatment and enzymatic degradation: Co-culturing of Saccharomyces cerevisiae and Pichia stipitis as fermentation approach\",\"authors\":\"Pallavi Punia,&nbsp;Sumeet Kumar\",\"doi\":\"10.1016/j.nxsust.2025.100131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The co-utilization of pentose and hexose in lignocellulosic biomass hydrolysate is the core for economically fermentative production of the second-generation bioethanol as a sustainable biofuel candidate. In this research, the production of bioethanol by co-culturing <em>S. cerevisiae</em> (MTCC174) and <em>P. stipitis</em> (NCIM 3497) with the SHF (separate hydrolysis and fermentation) process was reported. Enzymatic the saccharification process for fermentable sugars is induced by NaOH pre-treated SSR, as evidenced by the data. The optimal Box-Behnken Design parameters for pre-treated and hydrolyzed SSR were reported with 2 % concentration of NaOH, 1 mm with particle size, and 50 min duration were explored and showed a maximum cellulose concentration of 62.7 % as a response. The variables investigated in the model for hydrolysis found the maximal concentration of reducing sugar of 42.7 ± 2.117 mg/g, at ∼50℃ with 1:2 enzymes loading at a time of ∼72hrs. The physical and structural analysis can be done with FTIR, XRD, and FESEM techniques. The highest concentration of bioethanol of 16.8 g/L was attained in 72hrs fermentation time. The study infers that SHF has great potential for producing high-titer ethanol commercially and supports waste-to-energy strategies.</div></div>\",\"PeriodicalId\":100960,\"journal\":{\"name\":\"Next Sustainability\",\"volume\":\"5 \",\"pages\":\"Article 100131\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949823625000340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949823625000340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

木质纤维素生物质水解液中戊糖和己糖的协同利用是经济发酵生产第二代生物乙醇的核心。本研究报道了采用分离水解发酵(SHF)工艺共培养酿酒葡萄球菌(MTCC174)和芽孢链球菌(NCIM 3497)生产生物乙醇。酶催化可发酵糖的糖化过程是由NaOH预处理SSR诱导的,数据证明了这一点。对预处理和水解SSR的最佳Box-Behnken设计参数进行了探讨,NaOH浓度为2 %,粒径为1 mm,持续时间为50 min,最大纤维素浓度为62.7 %。在水解模型中研究的变量发现,在~ 50℃、1:2酶负荷、~ 72小时的条件下,还原糖的最大浓度为42.7 ± 2.117 mg/g。物理和结构分析可以用FTIR, XRD和FESEM技术进行。发酵72h时,生物乙醇的最高浓度为16.8 g/L。该研究推断,SHF在商业生产高滴度乙醇方面具有巨大的潜力,并支持废物转化为能源的战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of bioethanol production from sorghum residue by optimization of pre-treatment and enzymatic degradation: Co-culturing of Saccharomyces cerevisiae and Pichia stipitis as fermentation approach
The co-utilization of pentose and hexose in lignocellulosic biomass hydrolysate is the core for economically fermentative production of the second-generation bioethanol as a sustainable biofuel candidate. In this research, the production of bioethanol by co-culturing S. cerevisiae (MTCC174) and P. stipitis (NCIM 3497) with the SHF (separate hydrolysis and fermentation) process was reported. Enzymatic the saccharification process for fermentable sugars is induced by NaOH pre-treated SSR, as evidenced by the data. The optimal Box-Behnken Design parameters for pre-treated and hydrolyzed SSR were reported with 2 % concentration of NaOH, 1 mm with particle size, and 50 min duration were explored and showed a maximum cellulose concentration of 62.7 % as a response. The variables investigated in the model for hydrolysis found the maximal concentration of reducing sugar of 42.7 ± 2.117 mg/g, at ∼50℃ with 1:2 enzymes loading at a time of ∼72hrs. The physical and structural analysis can be done with FTIR, XRD, and FESEM techniques. The highest concentration of bioethanol of 16.8 g/L was attained in 72hrs fermentation time. The study infers that SHF has great potential for producing high-titer ethanol commercially and supports waste-to-energy strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信