制革废水中鱼鳞生物吸附剂对染料的吸附

Md. Abul Hashem , Forhad Ahammad , Bishwajit Chandra Das , Eshtiyaq Tauhid Enan , Modinatul Maoya , Mohammad Jakir Hossain Khan , Md. Mukimujjaman Miem
{"title":"制革废水中鱼鳞生物吸附剂对染料的吸附","authors":"Md. Abul Hashem ,&nbsp;Forhad Ahammad ,&nbsp;Bishwajit Chandra Das ,&nbsp;Eshtiyaq Tauhid Enan ,&nbsp;Modinatul Maoya ,&nbsp;Mohammad Jakir Hossain Khan ,&nbsp;Md. Mukimujjaman Miem","doi":"10.1016/j.nxsust.2025.100112","DOIUrl":null,"url":null,"abstract":"<div><div>In leather processing, dyeing is an essential operation to make it attractive for fashion style. Emitted dyeing wastewater contains dye, fixing agent, syntan, resin, and fat. Dye removal from real wastewater is challenging because it includes other matrices. Dyes in wastewater have an adverse influence on the aquatic ecosystem. This research concerns the suitability of fish biowaste adsorbent for dye removal from tannery wastewater. The obtained biosorbent was analyzed through Fourier Transform Infrared (FTIR) Spectroscopy, pH point of zero charge (pHpzc), Energy Dispersive Spectroscopy (EDS), and Scanning Electron Microscope (SEM). The dye removal efficiency was evaluated by monitoring the biosorbent dose, settling time, stirring time, and temperature effect. The dye adsorption mechanism was characterized using Freundlich and Langmuir’s regression models. The maximum dye removal efficiency (81.8 %) was achieved with a 2 g biosorbent dose per 50 mL of wastewater, 25 min stirring time, 30°C temperature, and 20 h settling time at pH 4.8. The adsorption kinetics demonstrated that the pseudo-second-order reaction (PSO) model shows a good regression coefficient (<em>R</em><sup><em>2</em></sup>=0.94). The removal of Total Dissolved Solids (TDS), Biochemical Oxygen Demand (BOD), turbidity, and Chemical Oxygen Demand (COD) were 39.8 %, 69.7 %, 48.1 %, and 90.1 %, respectively. Hence, the fish scale biosorbent could be a feasible adsorbent for leather dyeing wastewater treatment, and further research can be conducted to explore its potential for large-scale application.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100112"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dye adsorption on fish scale biosorbent from tannery wastewater\",\"authors\":\"Md. Abul Hashem ,&nbsp;Forhad Ahammad ,&nbsp;Bishwajit Chandra Das ,&nbsp;Eshtiyaq Tauhid Enan ,&nbsp;Modinatul Maoya ,&nbsp;Mohammad Jakir Hossain Khan ,&nbsp;Md. Mukimujjaman Miem\",\"doi\":\"10.1016/j.nxsust.2025.100112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In leather processing, dyeing is an essential operation to make it attractive for fashion style. Emitted dyeing wastewater contains dye, fixing agent, syntan, resin, and fat. Dye removal from real wastewater is challenging because it includes other matrices. Dyes in wastewater have an adverse influence on the aquatic ecosystem. This research concerns the suitability of fish biowaste adsorbent for dye removal from tannery wastewater. The obtained biosorbent was analyzed through Fourier Transform Infrared (FTIR) Spectroscopy, pH point of zero charge (pHpzc), Energy Dispersive Spectroscopy (EDS), and Scanning Electron Microscope (SEM). The dye removal efficiency was evaluated by monitoring the biosorbent dose, settling time, stirring time, and temperature effect. The dye adsorption mechanism was characterized using Freundlich and Langmuir’s regression models. The maximum dye removal efficiency (81.8 %) was achieved with a 2 g biosorbent dose per 50 mL of wastewater, 25 min stirring time, 30°C temperature, and 20 h settling time at pH 4.8. The adsorption kinetics demonstrated that the pseudo-second-order reaction (PSO) model shows a good regression coefficient (<em>R</em><sup><em>2</em></sup>=0.94). The removal of Total Dissolved Solids (TDS), Biochemical Oxygen Demand (BOD), turbidity, and Chemical Oxygen Demand (COD) were 39.8 %, 69.7 %, 48.1 %, and 90.1 %, respectively. Hence, the fish scale biosorbent could be a feasible adsorbent for leather dyeing wastewater treatment, and further research can be conducted to explore its potential for large-scale application.</div></div>\",\"PeriodicalId\":100960,\"journal\":{\"name\":\"Next Sustainability\",\"volume\":\"6 \",\"pages\":\"Article 100112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949823625000157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949823625000157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在皮革加工中,染色是一项必不可少的操作,使其具有时尚风格的吸引力。印染废水中含有染料、固色剂、鞣剂、树脂和脂肪。从实际废水中去除染料是具有挑战性的,因为它包含其他基质。废水中的染料对水生生态系统有不利影响。研究了鱼类生物废物吸附剂对制革废水脱除染料的适用性。采用傅里叶变换红外光谱(FTIR)、零电荷pH点(pHpzc)、能量色散光谱(EDS)和扫描电镜(SEM)对所得生物吸附剂进行了分析。通过监测生物吸附剂用量、沉淀时间、搅拌时间和温度效应来评价染料去除效果。采用Freundlich和Langmuir回归模型对染料吸附机理进行了表征。当生物吸附剂用量为2 g / 50 mL,搅拌时间为25 min,温度为30°C, pH为4.8,沉淀时间为20 h时,染料去除率最高(81.8 %)。吸附动力学表明,拟二级反应(PSO)模型具有良好的回归系数(R2=0.94)。总溶解固形物(TDS)去除率为39.8 %,生化需氧量(BOD)去除率为69.7 %,浊度去除率为48.1 %,化学需氧量(COD)去除率为90.1 %。因此,鱼鳞生物吸附剂是一种可行的皮革印染废水处理吸附剂,可以进一步研究其大规模应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dye adsorption on fish scale biosorbent from tannery wastewater
In leather processing, dyeing is an essential operation to make it attractive for fashion style. Emitted dyeing wastewater contains dye, fixing agent, syntan, resin, and fat. Dye removal from real wastewater is challenging because it includes other matrices. Dyes in wastewater have an adverse influence on the aquatic ecosystem. This research concerns the suitability of fish biowaste adsorbent for dye removal from tannery wastewater. The obtained biosorbent was analyzed through Fourier Transform Infrared (FTIR) Spectroscopy, pH point of zero charge (pHpzc), Energy Dispersive Spectroscopy (EDS), and Scanning Electron Microscope (SEM). The dye removal efficiency was evaluated by monitoring the biosorbent dose, settling time, stirring time, and temperature effect. The dye adsorption mechanism was characterized using Freundlich and Langmuir’s regression models. The maximum dye removal efficiency (81.8 %) was achieved with a 2 g biosorbent dose per 50 mL of wastewater, 25 min stirring time, 30°C temperature, and 20 h settling time at pH 4.8. The adsorption kinetics demonstrated that the pseudo-second-order reaction (PSO) model shows a good regression coefficient (R2=0.94). The removal of Total Dissolved Solids (TDS), Biochemical Oxygen Demand (BOD), turbidity, and Chemical Oxygen Demand (COD) were 39.8 %, 69.7 %, 48.1 %, and 90.1 %, respectively. Hence, the fish scale biosorbent could be a feasible adsorbent for leather dyeing wastewater treatment, and further research can be conducted to explore its potential for large-scale application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信