Next Nanotechnology最新文献

筛选
英文 中文
Tailoring of magnetic phase: Co-doped SiC thin films grown by RF sputtering 磁性相的定制:通过射频溅射生长的掺杂碳化硅薄膜
Next Nanotechnology Pub Date : 2024-10-04 DOI: 10.1016/j.nxnano.2024.100110
Mukesh Kumar , Amit Kumar Singh , Ashwani Kumar , Rinku Kumar , Yogendra K. Gautam , Sarat Kumar Dash , Ramesh Chandra
{"title":"Tailoring of magnetic phase: Co-doped SiC thin films grown by RF sputtering","authors":"Mukesh Kumar ,&nbsp;Amit Kumar Singh ,&nbsp;Ashwani Kumar ,&nbsp;Rinku Kumar ,&nbsp;Yogendra K. Gautam ,&nbsp;Sarat Kumar Dash ,&nbsp;Ramesh Chandra","doi":"10.1016/j.nxnano.2024.100110","DOIUrl":"10.1016/j.nxnano.2024.100110","url":null,"abstract":"<div><div>In the present work, we investigate the influence of cobalt (Co) doping on the structural and magnetic properties of cobalt-doped silicon carbide (Co-SiC) thin films. The films were fabricated using DC/RF magnetron sputtering technique on Si (100) substrates at a temperature of 1200°C, with varying Co concentrations ranging from 5 to 16 at. (at%. X-ray diffraction (XRD) analysis unveiled the co-existence of CoSi<sub>2</sub> and SiC phases in all the thin films. Surface morphological study through atomic force microscopy (AFM) revealed the densely packed nature of the films. Field emission scanning electron microscopy (FE-SEM) study showed that particles are uniformly distributed at the surface of the substrate. According to UV measurements, the films have high transmittance in the visible range, and as Co concentration rises, transmittance decreases. A magnetic phase transition from superparamagnetic to ferromagnetic behavior occurred with Co content surpassing 8 at% in the SiC thin films. Moreover, an increase in coercivity was observed from 38 Oe to 316 Oe as the doping concentration increased from 10 to 16 at%. This study represents an exploration into the induction of ferromagnetism through moderate Co doping in SiC thin films.</div></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"7 ","pages":"Article 100110"},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and morphological studies of non-covalent functionalization carbon nanotubes wrapped poly(3-hexylthiophene-2,5-diyl) nanocomposites 非共价官能化碳纳米管包裹聚(3-己基噻吩-2,5-二基)纳米复合材料的结构和形态研究
Next Nanotechnology Pub Date : 2024-10-03 DOI: 10.1016/j.nxnano.2024.100111
N. Abdullah , N.M. Nurazzi , I.P. Silverwood , S.K. Matam , S.Z.N. Demon , N.S.N. Sa'aya , N.A. Halim , K.W. Baharin
{"title":"Structural and morphological studies of non-covalent functionalization carbon nanotubes wrapped poly(3-hexylthiophene-2,5-diyl) nanocomposites","authors":"N. Abdullah ,&nbsp;N.M. Nurazzi ,&nbsp;I.P. Silverwood ,&nbsp;S.K. Matam ,&nbsp;S.Z.N. Demon ,&nbsp;N.S.N. Sa'aya ,&nbsp;N.A. Halim ,&nbsp;K.W. Baharin","doi":"10.1016/j.nxnano.2024.100111","DOIUrl":"10.1016/j.nxnano.2024.100111","url":null,"abstract":"<div><div>In this study, a simple and efficient non-covalent functionalization method was developed to introduce conducting polymer of P3HT onto pristine MWCNT and hydroxyl MWCNT surfaces without causing significant changes in electrical characteristics, especially if used as a sensing material. Electron microscopy (FE-SEM) and (HR-TEM) were used to examine the surface morphology of nanocomposites, which demonstrated that the MWCNTs were well wrapped by P3HT. EDX analysis showed interactions between MWCNT-OH and P3HT, with a higher sulfur content of 7.77 wt% from P3HT. Additionally, the diameters of both pristine MWCNT (24.46 nm) and MWCNT-OH (27.56 nm) increased significantly when they form nanocomposites (35.35 nm and 39.40 nm respectively). Further characterization of the produced P3HT-MWCNT nanocomposite was performed using FT-IR and Raman spectroscopy. It was discovered that MWCNTs were dispersed uniformly, with a substantial interaction between P3HT and MWCNTs. The introduction of malathion on the surface of the nanocomposites reveals interaction between P3HT and malathion via intermolecular hydrogen bonding of thiophene, as evidenced by inelastic neutron scattering (INS) spectroscopy, suggesting that the P3HT/MWCNT has the potential as a promising sensing material for organophosphate compounds detection.</div></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"7 ","pages":"Article 100111"},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of saponin-based nanocarriers for drug delivery 基于皂素的纳米载体给药综述
Next Nanotechnology Pub Date : 2024-10-02 DOI: 10.1016/j.nxnano.2024.100109
Pathy B. Lokole , Galilée G. Byamungu , Paulin K. Mutwale , Nadège K. Ngombe , Michel K. Mpuza , Virima Mudogo , Rui W.M. Krause , Christian I. Nkanga
{"title":"A review of saponin-based nanocarriers for drug delivery","authors":"Pathy B. Lokole ,&nbsp;Galilée G. Byamungu ,&nbsp;Paulin K. Mutwale ,&nbsp;Nadège K. Ngombe ,&nbsp;Michel K. Mpuza ,&nbsp;Virima Mudogo ,&nbsp;Rui W.M. Krause ,&nbsp;Christian I. Nkanga","doi":"10.1016/j.nxnano.2024.100109","DOIUrl":"10.1016/j.nxnano.2024.100109","url":null,"abstract":"<div><div>Nanoparticles (NPs) have been extensively used as smart vehicles for the target delivery of therapeutic, immunotherapeutic, and diagnostic agents. The versatility of NPs applications partly arises from the possibility of manufacturing various NPs types depending on the nature of starting materials. In most cases, amphiphilic materials such as phospholipids, solid lipids, fatty acid derivatives, and blends of oils/surfactants, are used to make distinct NPs, namely liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), micelles, and nanoemulsions, respectively. In the pipeline of raw materials, saponins have emerged as a promising alternative for NPs formulation. Saponins are plant-derived secondary metabolites (phytochemicals) with excellent amphiphilic properties, which allow them to play crucial roles in nanotechnology, including their usage as reagents for micellar preparation as well as stabilizing agents for several NPs. Saponin-based NPs have been used to improve the solubility, and pharmacological profile of various active ingredients, encompassing vaccines, owing to inherent immunostimulant/adjuvant properties of saponins. In this review, we mainly discuss the state of the art in biomedical and pharmaceutical applications of saponin-containing NPs, focusing on using saponins as raw materials to make original NPs or as adjuvants for improving already established NPs. The physicochemical properties of saponins have been highlighted, before describing putative nano-formulations with huge promise for drug delivery and vaccine development. The opportunities and challenges pertaining to saponins-containing NPs have been pointed out to set the stage for establishing saponins as an intriguing raw material for the effective translational development of revolutionary nanomedicines.</div></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"7 ","pages":"Article 100109"},"PeriodicalIF":0.0,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Luminescence sensing of narcotic drugs by a BSA protein stabilized AuAgCd trimetallic nanocluster 用 BSA 蛋白稳定的 AuAgCd 三金属纳米簇对麻醉药物进行发光传感
Next Nanotechnology Pub Date : 2024-09-21 DOI: 10.1016/j.nxnano.2024.100107
Shashikana Paria, Prasenjit Maity
{"title":"Luminescence sensing of narcotic drugs by a BSA protein stabilized AuAgCd trimetallic nanocluster","authors":"Shashikana Paria,&nbsp;Prasenjit Maity","doi":"10.1016/j.nxnano.2024.100107","DOIUrl":"10.1016/j.nxnano.2024.100107","url":null,"abstract":"<div><p>A luminescent trimetiallic nanocluster (NCs) stabilized by BSA protein (AuAgCd-BSA) was synthesized along with its mono and bimetallic counterparts (Au-BSA and AuAg-BSA). The detail characterization and comparative luminescence sensing performance for narcotic drugs and psychotropic substance (amphetamine, morphine) were performed for these three clusters. It was revealed that the trimetallic cluster can detect amphetamine and morphine drugs through turn on luminescence response. The calculated binding constants are found to be <em>K</em><sub>a</sub> = 5.86× 10<sup>3</sup> M<sup>−1</sup> for Amphetamine and 3.75× 10<sup>3</sup> M<sup>−1</sup> for Morphine by using Benesi-Hildebrand equation. The trimetallic cluster also showed selective turn off luminescence response in presence of mercury (Hg<sup>2+</sup>) ions. The origin of the enhanced PL responses in presence of amphetamine and morphine was further investigated by exploring the PL lifetime decay studies, which reveals that larger excited state lifetime (in μs timescale) value of pristine cluster remain unchanged upon incremental addition of drugs leading to longer interaction time with the analytes. Thus, the present work undoubtedly establishes the superior drug sensing behaviour of AuAgCd-BSA tri-metallic NCs as compared to its mono-metallic and bi-metallic counterparts and open further emphasis on exploring luminescence-based sensing of narcotic drugs which has great forensic relevance.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"7 ","pages":"Article 100107"},"PeriodicalIF":0.0,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000688/pdfft?md5=bcb9957161202b16e8e683a51dabcdaa&pid=1-s2.0-S2949829524000688-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface treatments with TiO2 nanostructures for bonding to zirconia materials as an alternative to conventional airborne-particle abrasion of the surface 用二氧化钛纳米结构对氧化锆材料进行表面处理,以替代传统的气载粒子表面磨削法
Next Nanotechnology Pub Date : 2024-09-16 DOI: 10.1016/j.nxnano.2024.100103
Constantino Fernandes-Neto , Erika Bronze-Uhle , Leonardo Francisco Gonçalves Dias , Fabio Antonio Piola Rizzante , Paulo Noronha Lisboa-Filho , Adilson Yoshio Furuse
{"title":"Surface treatments with TiO2 nanostructures for bonding to zirconia materials as an alternative to conventional airborne-particle abrasion of the surface","authors":"Constantino Fernandes-Neto ,&nbsp;Erika Bronze-Uhle ,&nbsp;Leonardo Francisco Gonçalves Dias ,&nbsp;Fabio Antonio Piola Rizzante ,&nbsp;Paulo Noronha Lisboa-Filho ,&nbsp;Adilson Yoshio Furuse","doi":"10.1016/j.nxnano.2024.100103","DOIUrl":"10.1016/j.nxnano.2024.100103","url":null,"abstract":"<div><p>Zirconia has become a popular choice for indirect restorations; however, adhesion to this material remains a challenge. The present study aimed to evaluate surface characteristics and bond strength to tetragonal Y-TZP and cubic Y-PSZ zirconia submitted to experimental surface treatments. Specimens of Y-TZP (T) and Y-PSZ (P) were prepared and divided into groups: Tf-A) thin TiO<sub>2</sub> film functionalized with 3-(aminopropyl)trimethoxysilane (APTMS); Tf) thin TiO<sub>2</sub> film; MNt-A) manual application of TiO<sub>2</sub> nanotubes with APTMS; MNt) manual application of TiO<sub>2</sub> nanotubes; VNt-A) vacuum application of TiO<sub>2</sub> nanotubes with APTMS; VNt) vacuum application of TiO<sub>2</sub> nanotubes; C) control with Al<sub>2</sub>O<sub>3</sub> sandblasting. Characterization with x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) was done. Bond strength was evaluated by microshear bond strength (µSBS). Data were analyzed by two-way ANOVA and Tukey’s HSD tests (α = 0.05). XPS showed signals for elements O 1 s, Ti 2p, and Zr 3d 5/2. In addition, high-resolution demonstrated Ti-O-Si and Zr-O-Si bonding for treatments with TiO<sub>2</sub> and APTMS for T-Tf-A/P-Tf-A. SEM presented a homogeneous film for T-Tf/T-Tf-A/P-Tf/P-Tf-A and cluster formations for all nanotube groups. Control groups for both Y-TZP and Y-PSZ showed clear surfaces. No differences of µSBS were seen between experimental surface treatments and the controls, except for T-MNt-A/T-VNt-A/P-MNt-A/P-VNt-A, which showed the lowest mean µSBS and highest incidence of pre-test failures. Surface treatments with TiO<sub>2</sub> nanostructures were effective in modifying the surface of both zirconia materials evaluated, providing strong covalent bonds, changes to the surface topology, and shear bond strength comparable to conventional sandblasting protocols.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"7 ","pages":"Article 100103"},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000640/pdfft?md5=e74ebd3b7feb0128513fbcdd9607b907&pid=1-s2.0-S2949829524000640-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Caffeic acid functionalized silver nanoparticles: A bionanoformulation and its assessment of cell cycle and in vitro cytotoxicity 咖啡酸功能化银纳米粒子:一种仿生制剂及其细胞周期和体外细胞毒性评估
Next Nanotechnology Pub Date : 2024-09-13 DOI: 10.1016/j.nxnano.2024.100105
Sangeetha Pushpanathan , Showket yahya , Amsaveni Gunasekaran , Sathan Raj Natarajan , Kayilainayaki Kannan , Kathiravan Krishnan
{"title":"Caffeic acid functionalized silver nanoparticles: A bionanoformulation and its assessment of cell cycle and in vitro cytotoxicity","authors":"Sangeetha Pushpanathan ,&nbsp;Showket yahya ,&nbsp;Amsaveni Gunasekaran ,&nbsp;Sathan Raj Natarajan ,&nbsp;Kayilainayaki Kannan ,&nbsp;Kathiravan Krishnan","doi":"10.1016/j.nxnano.2024.100105","DOIUrl":"10.1016/j.nxnano.2024.100105","url":null,"abstract":"<div><p>Caffeic acid, a potent polyphenol belonging to the hydroxycinnamic acid derivative class, was utilized in the synthesis of silver nanoparticles (AgNPs) at ambient temperature. The resultant conjugates underwent comprehensive characterization employing various analytical techniques, including UV–visible spectroscopy, FTIR, RAMAN spectroscopy, dynamic light scattering (DLS) for size and zeta potential analysis, atomic force microscopy (AFM), and scanning electron microscopy (SEM). Through these analyses, the morphological characteristics of the synthesized nanoparticles were elucidated, providing valuable insights into their structural properties. Subsequently, the cytotoxic effects of the caffeic acid-synthesized silver nanoparticles were assessed against A549 cells over a 48-h period by MTT assay. Remarkably, these nanoparticles exhibited significant toxicity towards the cells, with inhibitory effects observed at concentrations of 141 μg/ml for CA AgNPs. This underscores their potential as potent agents against cancer cells. Furthermore, the profound significance of caffeic acid-synthesized silver nanoparticles was evaluated specifically against A549 lung cancer cells. This was corroborated through cell cycle analysis, which demonstrated the potent anticancer activity of the caffeic acid-synthesized silver nanoparticles. Such findings suggest promising prospects for their utilization in diverse cancer treatment modalities. Overall, the successful synthesis and characterization of caffeic acid-synthesized silver nanoparticles underscore their potential as potent agents against cancer, particularly in combating A549 lung cancer cells. Further research and exploration into their mechanisms of action and potential synergistic effects with existing anticancer therapies could unveil additional avenues for their clinical translation and utilization in cancer management.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"7 ","pages":"Article 100105"},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000664/pdfft?md5=9247219ae7cadd0a89f02eb40bd67711&pid=1-s2.0-S2949829524000664-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation on plant extract-induced biosynthesis of Nickel nanoparticles 植物提取物诱导镍纳米颗粒生物合成的实验研究
Next Nanotechnology Pub Date : 2024-09-12 DOI: 10.1016/j.nxnano.2024.100104
Nimish Kumar , Anjali Singh , Vijay Devra
{"title":"Experimental investigation on plant extract-induced biosynthesis of Nickel nanoparticles","authors":"Nimish Kumar ,&nbsp;Anjali Singh ,&nbsp;Vijay Devra","doi":"10.1016/j.nxnano.2024.100104","DOIUrl":"10.1016/j.nxnano.2024.100104","url":null,"abstract":"<div><p>Here, we describe the phytosynthesis of nickel nanoparticles (NiNPs) utilizing an extract from the leaves of Azadirachta indica as a reducing and capping agent. The optimal conditions for synthesizing stable NiNPs were pH 6.8, temperature 70°C, and 5 % leaf extract and [NiNO<sub>3</sub>.6H<sub>2</sub>O] = 1.0×10<sup>−3</sup> mol dm<sup>−3</sup>. The X-ray diffraction (XRD) analysis revealed a face-centered cubic crystalline structure, and the Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) analyses verified a triangular form with particles ranging in size from 7 to 18 nm. The study examined the impact of reactant concentrations, reaction temperature, and solution pH on the nickel nanoparticle fabrication method. The following are the ideal parameters for synthesis: 5 % leaf extract, pH = 6.8, temperature = 70 °C, and [NiNO<sub>3</sub>.6H<sub>2</sub>O] = 1.0×10<sup>−3</sup> mol dm<sup>−3</sup>. Plant biomolecules induce the reduction of nickel ions to NiNPs and function as a capping and stabilizing agent, as confirmed by the FTIR technique. The findings indicated that the synthesis of NiNPs from A. indica leaf extracts are safe technology and may have significant impacts on the industrial synthesis of metallic nanoparticles.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"7 ","pages":"Article 100104"},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000652/pdfft?md5=db91375cf9c2572af8cb7de515711868&pid=1-s2.0-S2949829524000652-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of chalcogenide-based perovskites as the next novel materials: Solar cell and optoelectronic applications, catalysis and future perspectives 综述作为下一代新型材料的卤化物基包晶石:太阳能电池和光电应用、催化和未来展望
Next Nanotechnology Pub Date : 2024-09-11 DOI: 10.1016/j.nxnano.2024.100102
George G. Njema, Joshua K. Kibet
{"title":"A review of chalcogenide-based perovskites as the next novel materials: Solar cell and optoelectronic applications, catalysis and future perspectives","authors":"George G. Njema,&nbsp;Joshua K. Kibet","doi":"10.1016/j.nxnano.2024.100102","DOIUrl":"10.1016/j.nxnano.2024.100102","url":null,"abstract":"<div><p>The increasing demand for renewable energy has stimulated significant advancements in the photovoltaic technology (PV), with perovskite solar cells (PSCs) emerging as leading alternatives because of their impressive efficiency and versatile characteristics. Nevertheless, conventional lead-based PSCs face critical challenges such as environmental instability, lead toxicity, and limited durability, which hinder their broader commercial applications. Chalcogenide-based perovskites, on the other hand have been advanced as promising options, offering improved stability, less toxic compositions, and the potential for more cost-effective, scalable production. This review thoroughly examines the progress made in chalcogenide perovskite research, highlighting their tunable bandgaps for diverse applications, superior charge transport properties, and resilience against advanced weathering conditions such as moisture, oxygen, and UV light. The graphene-like characteristics of certain chalcogenide perovskites, which contribute to their high charge mobility and flexibility, make them strong candidates for the next-generation PV technologies. Furthermore, this work explores the expanding potential for indoor applications of these materials, including their integration into flexible indoor PSCs and other optoelectronic devices designed for controlled environments. Also, various synthesis and optimization strategies, such as advanced deposition techniques, precise doping methods, and innovative interface and additive engineering are presented, aimed at enhancing the PV performance of these materials. Accordingly, this review bridges the gap between fundamental research and practical applications, outlining a strategic direction for developing chalcogenide-based PSCs and optoelectronic devices that meet the global energy demand while advancing sustainability and environmental safety.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"7 ","pages":"Article 100102"},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000639/pdfft?md5=dd3ed0170f165e8d903bbbbe631861b2&pid=1-s2.0-S2949829524000639-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-human nanofluidic air transport through respirators and masks 通过呼吸器和面罩的人体内纳米流体空气传输
Next Nanotechnology Pub Date : 2024-09-09 DOI: 10.1016/j.nxnano.2024.100097
K.V. Chinmaya , Moumita Ghosh , G. Mohan Rao , Siddharth Ghosh
{"title":"In-human nanofluidic air transport through respirators and masks","authors":"K.V. Chinmaya ,&nbsp;Moumita Ghosh ,&nbsp;G. Mohan Rao ,&nbsp;Siddharth Ghosh","doi":"10.1016/j.nxnano.2024.100097","DOIUrl":"10.1016/j.nxnano.2024.100097","url":null,"abstract":"<div><p>During the COVID-19 pandemic, the mandatory use of multiple surgical masks or N95 respirators in public raised concerns about potential health issues associated with the increased breathing force needed to maintain the breathing cycle. To address these concerns, we conducted a comprehensive study investigating the transportation and filtering mechanisms of heterogeneous nanoparticles and virus-like particles through surgical masks and N95 respirators. Our multifaceted approach combined <em>in vitro</em> experiments utilising aerosol spray paints containing nanoparticles and <em>in vivo</em> validation on human volunteer inhaling city air. We employed scanning electron microscopy and transmission electron microscopy to analyse the distribution of nanoparticles across various mask layers and pristine silicon substrates placed on human skin. In addition, we provide analytical insights into the pressure distribution and fluid velocity profiles within the complex polymer fibre network of the masks. Our findings remarkably revealed that both single surgical masks and N95 respirators exhibited similar nanofluidic performance in filtering colloidal and jet-stream nanoparticles in the air. These results have significant implications for policymakers in developing regulations to manage airborne pandemics and air pollution control, ultimately enhancing public health and safety during respiratory health crises.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"7 ","pages":"Article 100097"},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000585/pdfft?md5=9779e9197bbf8212d3d0f548a1955d24&pid=1-s2.0-S2949829524000585-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the performance of InGaN-based micro-LED by plasma etching combined with ion implantation process 等离子刻蚀结合离子注入工艺的 InGaN 基微型 LED 性能研究
Next Nanotechnology Pub Date : 2024-09-07 DOI: 10.1016/j.nxnano.2024.100101
Yun-Cheng Hsu , Yu-Hsuan Hsu , Chien-Chung Lin , Ming Hsien Wu , Hao Chung Kuo , Dong-Sing Wuu , Ching-Lien Hsiao , Ray-Hua Horng
{"title":"Study on the performance of InGaN-based micro-LED by plasma etching combined with ion implantation process","authors":"Yun-Cheng Hsu ,&nbsp;Yu-Hsuan Hsu ,&nbsp;Chien-Chung Lin ,&nbsp;Ming Hsien Wu ,&nbsp;Hao Chung Kuo ,&nbsp;Dong-Sing Wuu ,&nbsp;Ching-Lien Hsiao ,&nbsp;Ray-Hua Horng","doi":"10.1016/j.nxnano.2024.100101","DOIUrl":"10.1016/j.nxnano.2024.100101","url":null,"abstract":"<div><p>This study utilized blue-light epitaxial wafers and employed semiconductor processes such as maskless laser writing, dry etching, wet etching, passivation layer deposition, electron beam evaporation, and ion implantation to fabricate micro-light emitting diode (μLED) arrays with different pixel sizes but the same emitting area (900 μm²). The μLED arrays with single pixel sizes of 5 μm, 10 μm, and 15 μm were fabricated, with array numbers of 6×6, 3×3, and 2×2, respectively. This study proposes etching the material in the channel region while retaining a certain width for implantation, known as the sidewall ion implantation process, aiming to achieve better insulation characteristics by using ion implantation technology to insulate the sidewall regions. It involves ion bombardment of the defect areas generated after plasma etching and the use of a passivation layer for protection. The isolation characteristics of μLED arrays processed by sidewall implantation exhibited better electrical isolation than those of μLED arrays processed only by plasma. The light output power, external quantum efficiency, and wall-plug efficiency were all superior for the sidewall implantation process when the device was miniaturized to 5 μm. Overall, the sidewall implantation process combined with plasma dry etching effectively improved the light output characteristics, with the enhancement ratio increasing as the device was miniaturized.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"7 ","pages":"Article 100101"},"PeriodicalIF":0.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000627/pdfft?md5=98f01b6e8bc7e76376acd14e964a6970&pid=1-s2.0-S2949829524000627-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142147567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信