Hydrothermal synthesis of nitrogen-doped CQDs for detection of Cr6+ and removal of MB dye in wastewater

Aysenur Aygun , Nihed Bennini , Rima Nour Elhouda Tiri , Idris Kaynak , Fatih Sen
{"title":"Hydrothermal synthesis of nitrogen-doped CQDs for detection of Cr6+ and removal of MB dye in wastewater","authors":"Aysenur Aygun ,&nbsp;Nihed Bennini ,&nbsp;Rima Nour Elhouda Tiri ,&nbsp;Idris Kaynak ,&nbsp;Fatih Sen","doi":"10.1016/j.nxnano.2025.100150","DOIUrl":null,"url":null,"abstract":"<div><div>Research has demonstrated the feasibility of synthesizing nitrogen-doped carbon quantum dots (CQDs) without the passivation or oxidation chemicals. Given that lemon peels are a rich, renewable carbon source and a common agricultural waste and that these peels are readily available, we chose to use them to prepare fluorescent CQDs to detect metal ions. Synthesis of N-CQDs using biowastes appears to be an environmentally friendly, fast, and efficient method. N-CQDs are preferred for sensing applications due to their various characteristic properties. N-CQDs are important for fluorescent sensors since they produce strong fluorescence emissions. In addition, since N-CQDs have high water solubility, they can work without any problems in biological and environmental sensing in aqueous solutions. The surface composition of N-CQDs was determined by Fourier transform infrared (FTIR) analysis and electronic transitions by UV–visible (UV-Vis) analysis. The morphology and average size of N-CQDs were determined by transmission electron microscope (TEM). In TEM analysis, the average particle size of the nanoparticles was determined to be 5.96 nm. N-CQDs were tested for heavy metal determination and exhibited a low detection limit of 19.37 µM for Cr<sup>6+</sup>. N-CQD exhibited 85.73 % photocatalytic activity for the degradation of methylene blue (MB) under visible light. The development of lemon peel-based N-CQDs has significant potential in environmental protection through the treatment of wastewater contaminated with MB dyes and the detection of Cr<sup>6+</sup> metal ions.</div></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"8 ","pages":"Article 100150"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829525000191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Research has demonstrated the feasibility of synthesizing nitrogen-doped carbon quantum dots (CQDs) without the passivation or oxidation chemicals. Given that lemon peels are a rich, renewable carbon source and a common agricultural waste and that these peels are readily available, we chose to use them to prepare fluorescent CQDs to detect metal ions. Synthesis of N-CQDs using biowastes appears to be an environmentally friendly, fast, and efficient method. N-CQDs are preferred for sensing applications due to their various characteristic properties. N-CQDs are important for fluorescent sensors since they produce strong fluorescence emissions. In addition, since N-CQDs have high water solubility, they can work without any problems in biological and environmental sensing in aqueous solutions. The surface composition of N-CQDs was determined by Fourier transform infrared (FTIR) analysis and electronic transitions by UV–visible (UV-Vis) analysis. The morphology and average size of N-CQDs were determined by transmission electron microscope (TEM). In TEM analysis, the average particle size of the nanoparticles was determined to be 5.96 nm. N-CQDs were tested for heavy metal determination and exhibited a low detection limit of 19.37 µM for Cr6+. N-CQD exhibited 85.73 % photocatalytic activity for the degradation of methylene blue (MB) under visible light. The development of lemon peel-based N-CQDs has significant potential in environmental protection through the treatment of wastewater contaminated with MB dyes and the detection of Cr6+ metal ions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信