Covalent functionalization of boron nitride nanotubes: A brief review

Thang Quoc Huynh
{"title":"Covalent functionalization of boron nitride nanotubes: A brief review","authors":"Thang Quoc Huynh","doi":"10.1016/j.nxnano.2025.100166","DOIUrl":null,"url":null,"abstract":"<div><div>Boron nitride nanotubes (BNNT) have garnered significant attention recently due to their unique properties, such as high thermal conductivity, excellent mechanical strength, neutron shielding capacity, and chemical stability. However, their inherent hydrophobic nature and poor solubility in most solvents hinder their widespread application in various fields. Covalent functionalization of BNNT offers a promising solution to enhance their dispersibility, tailor their properties, and enable their integration into diverse applications. This work examines advancements in covalent functionalization strategies to improve BNNT dispersibility and broaden their applicability. Key aspects explored include identifying effective functionalization methods, understanding their impact on BNNT structure, and evaluating current challenges. Various approaches, such as defect-site functionalization, defect generation, and direct functionalization, are analyzed. Therefore, this study will provide a systematic evaluation of emerging reactions, current limitations, and potential breakthroughs in BNNT modification.</div></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"7 ","pages":"Article 100166"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294982952500035X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Boron nitride nanotubes (BNNT) have garnered significant attention recently due to their unique properties, such as high thermal conductivity, excellent mechanical strength, neutron shielding capacity, and chemical stability. However, their inherent hydrophobic nature and poor solubility in most solvents hinder their widespread application in various fields. Covalent functionalization of BNNT offers a promising solution to enhance their dispersibility, tailor their properties, and enable their integration into diverse applications. This work examines advancements in covalent functionalization strategies to improve BNNT dispersibility and broaden their applicability. Key aspects explored include identifying effective functionalization methods, understanding their impact on BNNT structure, and evaluating current challenges. Various approaches, such as defect-site functionalization, defect generation, and direct functionalization, are analyzed. Therefore, this study will provide a systematic evaluation of emerging reactions, current limitations, and potential breakthroughs in BNNT modification.
氮化硼纳米管的共价功能化:简要回顾
氮化硼纳米管(BNNT)由于其独特的性能,如高导热性、优异的机械强度、中子屏蔽能力和化学稳定性,近年来引起了人们的广泛关注。然而,它们固有的疏水性和在大多数溶剂中的溶解度差阻碍了它们在各个领域的广泛应用。BNNT的共价功能化提供了一种很有前途的解决方案,可以提高它们的分散性,定制它们的性质,并使它们能够集成到各种应用中。这项工作考察了共价功能化策略的进展,以提高BNNT的分散性和扩大其适用性。探索的关键方面包括确定有效的功能化方法,了解它们对BNNT结构的影响,以及评估当前的挑战。分析了各种方法,如缺陷位点功能化、缺陷生成和直接功能化。因此,本研究将对BNNT修饰的新反应、当前限制和潜在突破进行系统评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信