Next Nanotechnology最新文献

筛选
英文 中文
Atomic layer deposition technology for the development of high-quality, full-colour micro-LED displays 用于开发高质量全彩微型 LED 显示器的原子层沉积技术
Next Nanotechnology Pub Date : 2024-02-01 DOI: 10.1016/j.nxnano.2024.100051
Zijun Yan, Suyang Liu, Yue Sun, Rongxing Wu, Youqin Lin, Hao-chung Kuo, Zhong Chen, Tingzhu Wu
{"title":"Atomic layer deposition technology for the development of high-quality, full-colour micro-LED displays","authors":"Zijun Yan, Suyang Liu, Yue Sun, Rongxing Wu, Youqin Lin, Hao-chung Kuo, Zhong Chen, Tingzhu Wu","doi":"10.1016/j.nxnano.2024.100051","DOIUrl":"https://doi.org/10.1016/j.nxnano.2024.100051","url":null,"abstract":"","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139892207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colorimetric sensing of chloride and fluoride by 2-quinonimine functionalized gold nanoparticles 2-quinonimine 功能化金纳米粒子对氯化物和氟化物的比色传感
Next Nanotechnology Pub Date : 2024-01-01 DOI: 10.1016/j.nxnano.2024.100090
Sadhana Kundu, Pradip Kar
{"title":"Colorimetric sensing of chloride and fluoride by 2-quinonimine functionalized gold nanoparticles","authors":"Sadhana Kundu,&nbsp;Pradip Kar","doi":"10.1016/j.nxnano.2024.100090","DOIUrl":"10.1016/j.nxnano.2024.100090","url":null,"abstract":"<div><p>Chloride and fluoride are very reactive water contaminants that have adverse effects on animal health as well as their psychochemical processes. The sensing of these two anions in an aqueous medium is important for clinical diagnosis, environmental monitoring, and various industrial applications. In this report, the stable colloid of gold nanoparticles functionalized (AuNPs) with 2-quinonimine (2-QI) was successfully synthesized to be used in the colorimetric sensing application of chloride and fluoride ions in an aqueous medium. A decrease in intensity of the Surface Plasmon Absorption (SPR) band in UV–VIS spectra was observed for colloids of AuNPs functionalized with 2-QI upon a gradual increase in the concentration of chloride or fluoride ions with respect to the water dilution. Though the intensity of the SPR band was found to decrease in the pH range of 2–12, the best result was observed at pH 2. A linearity range was observed up to 0.04 mM concentration of both the analyte for 880 μM AuNPs with sensitivity of ∼18–20 mM<sup>−1</sup> and a limit of detection of ∼8–8.5 μM. An immediate selective decolorization was observed by the naked eye for 0.5 mL of 160 μM AuNPs in a 0.5 mL aqueous chloride solution of 15 mM and fluoride solution of 17.5 mM. The responses were found to be selective over the other common cations, anions, or biomolecules tested. The proposed sensing mechanism was explained as the accumulation of AuNPs in micro-particles by destroying the stabilization of AuNPs through dipolar interaction with 2-QI.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000512/pdfft?md5=4e21df5fb2252c0dd0910fbab2885812&pid=1-s2.0-S2949829524000512-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141954317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-step synthesis of Al2O3–β-Sialon nanowhiskers ceramics for fluid-bed thermal storage system of solar energy 一步法合成用于太阳能流化床蓄热系统的 Al2O3-β-Sialon 纳米晶须陶瓷
Next Nanotechnology Pub Date : 2024-01-01 DOI: 10.1016/j.nxnano.2023.100039
Zhi Tu, Xinbin Lao, Xiaoyang Xu, Jianmin Liu, Jian Liang, Weihui Jiang
{"title":"One-step synthesis of Al2O3–β-Sialon nanowhiskers ceramics for fluid-bed thermal storage system of solar energy","authors":"Zhi Tu,&nbsp;Xinbin Lao,&nbsp;Xiaoyang Xu,&nbsp;Jianmin Liu,&nbsp;Jian Liang,&nbsp;Weihui Jiang","doi":"10.1016/j.nxnano.2023.100039","DOIUrl":"https://doi.org/10.1016/j.nxnano.2023.100039","url":null,"abstract":"<div><p>Sensible thermal storage ceramics in the form of the fluid-bed show good competency on dealing with the intermittency of renewable energy and improving energy utilization efficiency by integration the functions of thermal absorption and storage. In-situ nano-sized β-Sialon whiskers reinforced Al<sub>2</sub>O<sub>3</sub>-based ceramic materials for fluid-bed thermal storage system were one-step synthesized by aluminothermic reduction method, using solid waste coal-series kaolin and Al powder as main raw materials and firing at 1500 °C in N<sub>2</sub> atmosphere. The effects of Al content and firing temperature on phase evolution, microstructure and properties of fired samples were researched by XRD, SEM, TEM, etc. The results showed that nano-sized β-Sialon whiskers could be in-situ synthesized at 1300 °C, which effectively enhanced the bending strength of fired samples. The highest β-Sialon content and the optimal properties could be achieved at 1500 °C while coal-series kaolin and Al mass ratio was equal to 70∶30, which were listed as follows: 30.7 % β-Sialon content, 74.9 MPa high-temperature bending strength (at 1400 °C), 6.17 × 10<sup>-6</sup>·°C<sup>-1</sup> thermal expansion coefficient (room temperature-1000 °C), 0.74 J·(g·K)<sup>-1</sup> specific heat capacity (at room temperature), 873.90 kJ·kg<sup>-1</sup> theoretical thermal storage density (ΔT=900 °C), which is suitable as the thermal storage material for the fluid-bed thermal storage system.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829523000396/pdfft?md5=9c403c9fda9225cbe21753155e00dc58&pid=1-s2.0-S2949829523000396-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140209452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eco-friendly synthesis of copper oxide nanomaterial by using Musa paradisiaca leaves extract and their slow pyrolysis or catalytic reduction activities 利用麝香草叶提取物合成生态友好型氧化铜纳米材料及其缓慢热解或催化还原活性
Next Nanotechnology Pub Date : 2024-01-01 DOI: 10.1016/j.nxnano.2024.100041
Rida Khalid, Muhammad Imran Din, Zaib Hussain
{"title":"Eco-friendly synthesis of copper oxide nanomaterial by using Musa paradisiaca leaves extract and their slow pyrolysis or catalytic reduction activities","authors":"Rida Khalid,&nbsp;Muhammad Imran Din,&nbsp;Zaib Hussain","doi":"10.1016/j.nxnano.2024.100041","DOIUrl":"https://doi.org/10.1016/j.nxnano.2024.100041","url":null,"abstract":"<div><p>Copper oxide nanoparticles (CuO NPs) have been prepared via sol-gel synthetic approach using aqueous leaves extract of <em>Musa paradisiacal</em> and copper chloride dehydrate salt. UV visible spectroscopy showed maximum peak for CuO NPs at 535 nm. Additionally, the SEM XRD techniques confirmed spherical shape of CuO NPs with average size of 15 nm. Nitro compounds have been carefully chosen as a tested contaminant to study performance of CuO NPs. Catalytic reduction of nitro compounds was investigated under different temperatures to evaluate thermodynamic studies. According to the results, catalytic reduction of nitro compounds obeys Langmuir–Hinshelwood mechanism. The value of apparent rate constant shows a linear trend with catalyst concentration. The catalytic pyrolysis of corncob biomass in the presence of CuO NPs showed more bio-oil (46.13 %) yield as compared to ZSM-5 (40.07 %) and without catalyst (37.09 %) reactions. The data also confirmed that CuO NPs showed excellent performance as a micro-reactor for catalytic degradation of nitro compounds and catalytic pyrolysis. The CuO NPs have been isolated and reused in 5 consecutive cycles with good and reproducible excellent performance.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000020/pdfft?md5=d9760aaeb48bd873b0e2af1002d2f0e4&pid=1-s2.0-S2949829524000020-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140345336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conjugated polymer-perovskite quantum dot (MDMO-PPV:CsPbBr3) nanocomposites: Miscibility, nano-structures, and properties 共轭聚合物-波长量子点(MDMO-PPV:CsPbBr3)纳米复合材料:混溶性、纳米结构和性能
Next Nanotechnology Pub Date : 2024-01-01 DOI: 10.1016/j.nxnano.2024.100053
Getachew Welyab , Mulualem Abebe , Dhakshnamoorthy Mani , Jibin Keloth Paduvilan , Lishin Thottathi , Aparna Thankappan , Sabu Thomas , Tadele Hunde Wondimu , Jung Yong Kim
{"title":"Conjugated polymer-perovskite quantum dot (MDMO-PPV:CsPbBr3) nanocomposites: Miscibility, nano-structures, and properties","authors":"Getachew Welyab ,&nbsp;Mulualem Abebe ,&nbsp;Dhakshnamoorthy Mani ,&nbsp;Jibin Keloth Paduvilan ,&nbsp;Lishin Thottathi ,&nbsp;Aparna Thankappan ,&nbsp;Sabu Thomas ,&nbsp;Tadele Hunde Wondimu ,&nbsp;Jung Yong Kim","doi":"10.1016/j.nxnano.2024.100053","DOIUrl":"https://doi.org/10.1016/j.nxnano.2024.100053","url":null,"abstract":"<div><p>All-inorganic cesium lead bromide (CsPbBr<sub>3</sub>) quantum dots (QDs) have received a surge of attention in the field of light-emitting diode (LED) display and lighting. Hence, it is interesting to study the composite film composed of CsPbBr<sub>3</sub> and light-emitting MDMO-PPV matrix polymer. In this study, we investigate the phase behavior among the components, MDMO-PPV, toluene (solvent), and oleic acid and oleylamine (the surface ligands for QDs) based on the Flory-Huggins theory with the group contribution method for the first time. Here we find that the MDMO-PPV and ligand molecules are immiscible whereas MDMO-PPV and toluene are partially miscible. Then through the x-ray diffraction (XRD) patterns, we demonstrate that CsPbBr<sub>3</sub> QDs form a nanoscale domain with ∼33–52 nm crystallites in the MDMO-PPV matrix. Furthermore, the scanning electron microscope (SEM) images display that CsPbBr<sub>3</sub> QDs can be highly aggregated at MDMO-PPV:CsPbBr<sub>3</sub>= 50:50 composition. Then, through the ultraviolet-visible (UV–vis) and photoluminescence (PL) spectra, the enhancement of PL intensity is observed at ∼30–50 wt% CsPbBr<sub>3</sub>. Finally, the electrochemical impedance spectra indicate that the composite film exhibits less resistance (∼3.2×10<sup>4</sup> Ω) than the pure MDMO-PPV film (∼1.4×10<sup>7</sup> Ω), suggesting that the MDMO-PPV<img>CsPbBr<sub>3</sub> composite approach is promising for electrochemical and optoelectronic applications.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000147/pdfft?md5=9f654e77f23558b278566a0185f2cc5c&pid=1-s2.0-S2949829524000147-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139907538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile synthesis of nanostructured sodium and MoS2 incorporated Ni-MOFs with excellent cyclic durability for symmetric supercapacitor application 轻松合成具有优异循环耐久性的纳米结构钠和 MoS2 掺杂 Ni-MOFs 以用于对称超级电容器
Next Nanotechnology Pub Date : 2024-01-01 DOI: 10.1016/j.nxnano.2023.100031
Sheng Qiang Zheng , Siew Shee Lim , Chuan Yi Foo , Choon Yian Haw , Wee Siong Chiu , Chin Hua Chia , Poi Sim Khiew
{"title":"Facile synthesis of nanostructured sodium and MoS2 incorporated Ni-MOFs with excellent cyclic durability for symmetric supercapacitor application","authors":"Sheng Qiang Zheng ,&nbsp;Siew Shee Lim ,&nbsp;Chuan Yi Foo ,&nbsp;Choon Yian Haw ,&nbsp;Wee Siong Chiu ,&nbsp;Chin Hua Chia ,&nbsp;Poi Sim Khiew","doi":"10.1016/j.nxnano.2023.100031","DOIUrl":"10.1016/j.nxnano.2023.100031","url":null,"abstract":"<div><p>Highly porous and nanostructured metal-organic frameworks (MOFs) have fascinated enormous interest as electrode active materials for electrochemical energy storage systems, whereas their practical applications are significantly hindered by their relative inferior energy density and cyclability. In this study, MoS<sub>2</sub> with layered structure was successfully incorporated onto hierarchical Ni-MOFs via a facile hydrothermal approach. Moreover, sodium cations were introduced to improve electronic conductivity. The resulting nanocomposites (sodium ions and MoS<sub>2</sub> incorporated Ni-MOFs) exhibited hierarchical porous structures with varying dimensions, offering increased volume for charge storage and diffusion channels for electrolyte ions. Benefiting from the unique topological architectures, the as-synthesized porous nanocomposites delivered an excellent supercapacitive performance, achieving a superlative energy of 33.33 Wh kg<sup>−1</sup> and a power density of 3390 W kg<sup>−1</sup>. Furthermore, the as-fabricated symmetric supercapacitor device delivered a remarkable cycling durability where the acquired outstanding capacitance retention was 97.42% and coulombic efficiency was 97.82% respectively over more than 10,000 cycles in an aqueous electrolyte.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829523000311/pdfft?md5=dec8c20229f1c7e79fe94087ab730d7f&pid=1-s2.0-S2949829523000311-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138623383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interstitial tuning of Y3+ sites with Li+ sensitized improved Tb3+emission for WLED application 利用 Li+敏化改进 Tb3+发射的 Y3+位点间隙调谐技术,实现 WLED 应用
Next Nanotechnology Pub Date : 2024-01-01 DOI: 10.1016/j.nxnano.2024.100079
Davidson Pyngrope, Phlegon Syndai, Amresh I Prasad
{"title":"Interstitial tuning of Y3+ sites with Li+ sensitized improved Tb3+emission for WLED application","authors":"Davidson Pyngrope,&nbsp;Phlegon Syndai,&nbsp;Amresh I Prasad","doi":"10.1016/j.nxnano.2024.100079","DOIUrl":"https://doi.org/10.1016/j.nxnano.2024.100079","url":null,"abstract":"<div><p>A series of wide-ranging single phase YPO<sub>4</sub>:xTb<sup>3+</sup> phosphor was prepared by wet chemical route. In order to maximise the use of YPO<sub>4</sub>:Tb<sup>3+</sup> nanoparticles in WLED, this work used Li<sup>+</sup> sensitization to interstitially modify the particles' photoluminescence intensity. The prepared nanoparticles are characterized using X-Ray diffraction, FT-IR, TEM and Photoluminescence. The annealing effect on the particle size, morphology and its luminescence intensities are studied. This increased crystallinity led to a rise in the photoluminescence intensity of the nanoparticles. YPO<sub>4</sub>:Tb<sup>3+</sup> nanoparticles' excitation and emission spectra were shown by photoluminescence investigations. Optical absorption and emission spectra confirmed all peaks associated to various transitions of the Tb<sup>3+</sup> ions. Because of the increased crystallinity and decreased water content, the emission intensity rose with the annealing temperature. Li<sup>+</sup> co-doping increased the emission intensity even more; where the emission intensity showed seven times. The results emphasise the significance of Li<sup>+</sup> sensitization and annealing temperature in adjusting the luminous properties for possible uses in WLED and other display systems</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000408/pdfft?md5=475a52e57a8e329c613a5e84ab1771b5&pid=1-s2.0-S2949829524000408-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141423220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-invasive flexible sensor based on liquid metal for human physiological detection 用于人体生理检测的基于液态金属的非侵入式柔性传感器
Next Nanotechnology Pub Date : 2024-01-01 DOI: 10.1016/j.nxnano.2024.100042
Zixuan Guo , Gengcheng Liao , Long Ren , Hui Qiao , Zongyu Huang , Ziyu Wang , Xiang Qi
{"title":"Non-invasive flexible sensor based on liquid metal for human physiological detection","authors":"Zixuan Guo ,&nbsp;Gengcheng Liao ,&nbsp;Long Ren ,&nbsp;Hui Qiao ,&nbsp;Zongyu Huang ,&nbsp;Ziyu Wang ,&nbsp;Xiang Qi","doi":"10.1016/j.nxnano.2024.100042","DOIUrl":"https://doi.org/10.1016/j.nxnano.2024.100042","url":null,"abstract":"<div><p>Flexible sensors play an important role in simulation, brain-computer interaction, intelligent robots, and biological detection. Due to the progress of modern medical means, the construction of wearable flexible sensors to realize remote and continuous monitoring of human physical indicators and physiological parameters has become a hot research topic. Non-invasive sensor is a device that can detect physiological parameters without cutting the skin or puncturing the body. They have wide application prospects in the fields of medical treatment, fitness, and daily care due to the following advantages: real-time monitoring, portability, accuracy, and cost reduction. Liquid metal has become a great candidate for constructing flexible biosensors because of its high conductivity, deformability, self-healing, and bio-friendly properties, its spontaneous formation of an oxide film due to exposure to oxygen provides a convenient reaction platform for the preparation of other materials. Two-dimensional materials are inherently superior in preparing sensors due to their great advantages unique chemical and physical properties, their high surface area-to-volume ratios and ultra-high surface sensitivity to the environment also can be used to prepare flexible sensor. This study presents an overview and introduction of biosensors fabricated by liquid metal and two-dimensional materials, including how to prepare specific two-dimensional materials based on liquid metal, and the stripping method is also included. Three kinds of applications are discussed in detail, including the detection of human glucose concentration, pulse detection, and sweat analysis, whose sensing principles depend on piezoelectric, optical, and electrochemical. At the end of the article, we summarized the current challenges faced by biosensors based on liquid metal and looked forward to its future development and future directions of advances.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000032/pdfft?md5=b5dd5a4568b9292df600533871976ca0&pid=1-s2.0-S2949829524000032-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139467681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blue micro-LED with a red/green blended polymer film for 3.5-Gbps visible light communication employing adaptive SNR-Flattening Algorithm 采用自适应 SNR 扁平化算法的蓝光微型 LED 与红/绿混合聚合物薄膜,用于 3.5 Gbps 可见光通信
Next Nanotechnology Pub Date : 2024-01-01 DOI: 10.1016/j.nxnano.2024.100043
Pin-Wei Ho , Chih-Hsien Cheng , Yu-Sheng Liao , Yu-Chieh Chi , Annada Sankar Sadhu , Atsushi Matsumoto , Kouichi Akahane , Li-Yin Chen , Hao-Chung Kuo , Gong-Ru Lin
{"title":"Blue micro-LED with a red/green blended polymer film for 3.5-Gbps visible light communication employing adaptive SNR-Flattening Algorithm","authors":"Pin-Wei Ho ,&nbsp;Chih-Hsien Cheng ,&nbsp;Yu-Sheng Liao ,&nbsp;Yu-Chieh Chi ,&nbsp;Annada Sankar Sadhu ,&nbsp;Atsushi Matsumoto ,&nbsp;Kouichi Akahane ,&nbsp;Li-Yin Chen ,&nbsp;Hao-Chung Kuo ,&nbsp;Gong-Ru Lin","doi":"10.1016/j.nxnano.2024.100043","DOIUrl":"https://doi.org/10.1016/j.nxnano.2024.100043","url":null,"abstract":"<div><p>By the semipolar blue single GaN μ-LED and blended Ir(piq)2(acac) + CC-MP5 polymer thin film color converter, a high-speed white-light μ-LED-based system is built up for the applications of short-distance VLC. The characteristics and properties of both devices are analyzed to understand the requirements for transmission and illumination. By selecting the growing orient, the influence of QCSE is reduced in this GaN μ-LED. Meanwhile, possessing the low reflection characteristic, it is beneficial for signal modulation. For the polymer thin film color converter with a lifetime of 7.8 ns, low surface reflection and high conversion efficiency are thought of good properties. Color-converted cool white light has a CCT of around 7000 K and high color accuracy with a CRI of about 90. The APD-combined frequency responses of the GaN μ-LED and GaN μ-LED + polymer are measured as 750 MHz and 600 MHz, respectively. After the optimization by utilizing the adaptive SNR-flattening pre-emphasis algorithm, the transmission performance of the white-light μ-LED is significantly promoted. For NRZ-OOK encoding, a 1.4 Gbps 0.15-m free-space transmission is achieved with a rising time of 656.33 ps, a falling time of 493.32 ps, and a Q-factor of 4.75. Besides, in more advanced data formats, the performance of this white-light μ-LED can be better highlighted. For the same 0.15-m free-space VLC, a high-speed 3 Gbps broadband 8-QAM-OFDM transmission is fulfilled with an EVM of 23.9%, an average SNR of 12.5, and a BER below 3.8 × 10<sup>-3</sup>; while to the best of our knowledge, a record 3.5 Gbps BL-DMT transmission is implemented as well. This white-light μ-LED can also be integrated into large-scale arrays for multi-functional VLC applications.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000044/pdfft?md5=7596cdd00b1ac05eb80dc3ac3029841d&pid=1-s2.0-S2949829524000044-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139549180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Au nanopillar array prepared by selective etching of Au-Sr3Al2O6 vertically aligned nanocomposite thin films 通过选择性蚀刻金-Sr3Al2O6 垂直排列纳米复合薄膜制备金纳米柱阵列
Next Nanotechnology Pub Date : 2024-01-01 DOI: 10.1016/j.nxnano.2024.100071
Benson Kunhung Tsai , Jiawei Song , Juncheng Liu , Jianan Shen , Yizhi Zhang , Xinghang Zhang , Haiyan Wang
{"title":"Au nanopillar array prepared by selective etching of Au-Sr3Al2O6 vertically aligned nanocomposite thin films","authors":"Benson Kunhung Tsai ,&nbsp;Jiawei Song ,&nbsp;Juncheng Liu ,&nbsp;Jianan Shen ,&nbsp;Yizhi Zhang ,&nbsp;Xinghang Zhang ,&nbsp;Haiyan Wang","doi":"10.1016/j.nxnano.2024.100071","DOIUrl":"https://doi.org/10.1016/j.nxnano.2024.100071","url":null,"abstract":"<div><p>Au nanostructures offer a wide range of applications such as surface-enhanced Raman spectroscopy, photovoltaics, and biosensors. Effective integrating well-controlled Au nanostructures on chip via a self-assembly process remains challenging as most of the Au nanostructures were prepared by either chemical synthesis methods or lithography patterning techniques. This study introduces a simple two-step approach for fabricating Au nanostructures on substrate with well controlled morphology and density. First, epitaxial Au-Sr<sub>3</sub>Al<sub>2</sub>O<sub>6</sub> (SAO) vertically aligned nanocomposites (VANs) were deposited on SrTiO<sub>3</sub> substrates. Second, by subsequently dissolving the water-soluble SAO matrix, various Au nanostructures ranging from 0D nanoparticles to 1D nanopillars are demonstrated. The Au morphology tuning is achieved by varying the deposition parameters of the VANs. This method eliminates the need of harsh chemical solutions and tedious lithography/patterning steps. These findings provide a novel strategy for tailoring the Au nanostructures and their optical properties, and, demonstrating on-chip integration for advanced optical device applications.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000329/pdfft?md5=29bd5d2c4aff147d2723ae1870e5e0f2&pid=1-s2.0-S2949829524000329-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140604547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信