Materials Today Electronics最新文献

筛选
英文 中文
Contact engineering for two-dimensional van der Waals semiconductors 二维范德华半导体的接触工程
Materials Today Electronics Pub Date : 2024-12-07 DOI: 10.1016/j.mtelec.2024.100132
Jiachen Tang, Shuaixing Li, Li Zhan, Songlin Li
{"title":"Contact engineering for two-dimensional van der Waals semiconductors","authors":"Jiachen Tang,&nbsp;Shuaixing Li,&nbsp;Li Zhan,&nbsp;Songlin Li","doi":"10.1016/j.mtelec.2024.100132","DOIUrl":"10.1016/j.mtelec.2024.100132","url":null,"abstract":"<div><div>Two-dimensional (2D) semiconductors represent the most promising post-silicon channel materials for ultimate electronics. However, the unique atomic thickness renders them incompatible with traditional atomic doping technique through ion implantation and thermal activation, which poses a key challenge for constructing ohmic contacts with 2D semiconductors. In the last decade, constant efforts have been devoted to address this critical challenge. In this article, by casting light on the origins of contact resistance between electrodes and 2D semiconductors, we review various strategies of contact engineering for 2D van der Waals semiconductors and the steady progress achieved in this specific issue, in order to provide guidance for device design and integration of 2D semiconductors for next-generation electronics.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"11 ","pages":"Article 100132"},"PeriodicalIF":0.0,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143103655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semiconductor sensing surfaces via oxygen-injection treatment 通过氧注入处理的半导体传感表面
Materials Today Electronics Pub Date : 2024-12-01 DOI: 10.1016/j.mtelec.2024.100120
Xiaowu Wang, Zhenggang Xue, Jiaqiang Xu
{"title":"Semiconductor sensing surfaces via oxygen-injection treatment","authors":"Xiaowu Wang,&nbsp;Zhenggang Xue,&nbsp;Jiaqiang Xu","doi":"10.1016/j.mtelec.2024.100120","DOIUrl":"10.1016/j.mtelec.2024.100120","url":null,"abstract":"","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"10 ","pages":"Article 100120"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanotwinned thermoelectric materials 纳米孪晶热电材料
Materials Today Electronics Pub Date : 2024-12-01 DOI: 10.1016/j.mtelec.2024.100128
Ting-Rui Luo , Yingchao Wei , Zheng Ma , Junyou Yang
{"title":"Nanotwinned thermoelectric materials","authors":"Ting-Rui Luo ,&nbsp;Yingchao Wei ,&nbsp;Zheng Ma ,&nbsp;Junyou Yang","doi":"10.1016/j.mtelec.2024.100128","DOIUrl":"10.1016/j.mtelec.2024.100128","url":null,"abstract":"<div><div>Thermoelectric materials is the key energy conversion unit of thermoelectic module, whose figure of merit <em>ZT</em> determines largely the energy conversion efficiency of thermoelectric modules. Therefore, how to improve the <em>ZT</em> values of thermoelectric materials has become a research focus in thermoelectric community. Recently, nanotwins have attracted great attention in thermoelectric community because of its merits of low carrier scattering, strong phonon scattering, and effective hindering effect on dislocation motion. Theoretical and experimental studies have shown that nanotwins have great potential in improving the thermoelectric properties (i.e., figure of merit <em>ZT</em>) and mechanical properties (e.g., plastic deformation strength, fracture toughness) of thermoeletric materials. Herein, we summary the progress of theoretical and experimental reseach on nanotwinned thermoelectric materials, including bismuth telluride alloys, Cu-Sn-S based semiconductors, InSb semiconductor, constantan based alloys, and high entropy semiconductor, providing feasible reference for nanotwins design of other thermoelectric materials.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"10 ","pages":"Article 100128"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advancements and challenges in highly stable all-inorganic perovskite solar cells 高稳定性全无机过氧化物太阳能电池的最新进展与挑战
Materials Today Electronics Pub Date : 2024-11-22 DOI: 10.1016/j.mtelec.2024.100127
Sunkyu Kim , Muhammad Adnan , Zobia Irshad, Wonjong Lee, Siwon Yun, Hyeji Han, Jongchul Lim
{"title":"Recent advancements and challenges in highly stable all-inorganic perovskite solar cells","authors":"Sunkyu Kim ,&nbsp;Muhammad Adnan ,&nbsp;Zobia Irshad,&nbsp;Wonjong Lee,&nbsp;Siwon Yun,&nbsp;Hyeji Han,&nbsp;Jongchul Lim","doi":"10.1016/j.mtelec.2024.100127","DOIUrl":"10.1016/j.mtelec.2024.100127","url":null,"abstract":"<div><div>Organic–inorganic perovskite solar cells (PSCs) have attracted significant attention because of their outstanding photoelectric conversion efficiency, simple fabrication process, and long exciton diffusion lengths. In particular, the power conversion efficiency of single-junction PSCs is 26.1%, whereas that of multi-junction silicon/perovskite tandem solar cells reaches an impressive 33.9%, indicating good prospects for the solar cell market. However, traditional organic–inorganic PSCs are highly sensitive to moisture, light, and heat, which negatively affect their stability and thereby commercialization. Nowadays, all-inorganic perovskites are attracting considerable attention for application in solar cells because of their potential to attain high resistance to environmental factors. All-inorganic perovskites have been considered an alternative to organic–inorganic perovskites because of their advantages over organic–inorganic perovskites, such as the capability to stabilize the photoactive phase, long-term thermal stability, and the possibility of tailoring the bandgap structure. Herein, we perform a detailed meta-analysis of materials and approaches used for the preparation of all-inorganic perovskite thin films and discuss recent advancements in key performance parameters such as efficiency, stability, and electrical and optoelectronic properties. Finally, we outline directions for future studies.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"10 ","pages":"Article 100127"},"PeriodicalIF":0.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coherent epitaxy of HfxZr1-xO2 thin films by high-pressure magnetron sputtering 通过高压磁控溅射实现 HfxZr1-xO2 薄膜的相干外延
Materials Today Electronics Pub Date : 2024-11-13 DOI: 10.1016/j.mtelec.2024.100124
Tengteng Zhang , Yuyan Fan , Zhipeng Xue , Mengwei Si , Zhen Wang , Xiuyan Li , Yanwei Cao
{"title":"Coherent epitaxy of HfxZr1-xO2 thin films by high-pressure magnetron sputtering","authors":"Tengteng Zhang ,&nbsp;Yuyan Fan ,&nbsp;Zhipeng Xue ,&nbsp;Mengwei Si ,&nbsp;Zhen Wang ,&nbsp;Xiuyan Li ,&nbsp;Yanwei Cao","doi":"10.1016/j.mtelec.2024.100124","DOIUrl":"10.1016/j.mtelec.2024.100124","url":null,"abstract":"<div><div>Due to remarkable high-k and ferroelectric properties in CMOS devices, the study of crystalline Hf<sub>x</sub>Zr<sub>1-x</sub>O<sub>2</sub> (HZO) thin films has attracted tremendous interest recently. However, up to now, the epitaxial growth of HZO films has only been achieved by pulse laser deposition, a technique scarcely utilized in CMOS devices. Therefore, developing appropriate epitaxial methods of HZO films (such as sputtering) is fairly necessary, but a challenge at present. In this work, high-quality single-crystalline HZO films were synthesized by high-pressure magnetron sputtering. The epitaxial growth of HZO films on yttria-stabilized zirconia (YSZ) substrate was demonstrated by a combination of high-resolution X-ray diffraction, atom force microscope, and scanning transmission electron microscope. In addition, good insulating characteristics were obtained by replacing insulating substrates with conductive substrates as electrodes. Our results provide a novel way for the epitaxial growth of the single-crystalline structure of HZO thin films towards the high performance of high-k and ferroelectric devices.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"10 ","pages":"Article 100124"},"PeriodicalIF":0.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of bilayer ITO/YZO/PMMA/Al memory devices with insight ternary switching mechanism 制造具有三元开关机制的双层 ITO/YZO/PMMA/Al 存储器件
Materials Today Electronics Pub Date : 2024-11-07 DOI: 10.1016/j.mtelec.2024.100125
Anirudh Kumar , Satendra Pal Singh , Sejoon Lee , Sanjeev Kumar Sharma
{"title":"Fabrication of bilayer ITO/YZO/PMMA/Al memory devices with insight ternary switching mechanism","authors":"Anirudh Kumar ,&nbsp;Satendra Pal Singh ,&nbsp;Sejoon Lee ,&nbsp;Sanjeev Kumar Sharma","doi":"10.1016/j.mtelec.2024.100125","DOIUrl":"10.1016/j.mtelec.2024.100125","url":null,"abstract":"<div><div>Two terminal resistive switching memories are emerging candidates for the next generation of non-volatile memory in the upcoming era of artificial intelligence and big data generated globally. Much research is currently focused on developing write-once-read-many-times (WORM) memory devices, which offer the advantages of small size, high speed, improved energy consumption, and large data capacity. Nanostructured organic/inorganic heterojunction composites have garnered significant attention due to their excellent scalability and low-cost fabrication. In the present study, the YZO/PMMA hybrid nanocomposite bilayer ReRAM was fabricated on ITO substrates. The I-V characteristics of the fabricated ITO/YZO/PMMA/Al device exhibited the ternary WORM switching behavior (HRS, LRS1, and LRS2 states). It has been observed that three states of “HRS”, “LRS1” and “LRS2” exhibit a distinct current ratio of LRS1/HRS and LRS2/HRS of 10<sup>1.6</sup> and 10<sup>2.4</sup><sub>,</sub> respectively, with good data retention (up to 500 h). It was demonstrated that Y-dopant concentration into ZnO significantly transits the switching behavior of ITO/ZnO/PMMA/Al memory from binary to ternary WORM switching characteristics. Ohmic conduction and space charge-limited current (SCLC) were observed in the HRS. In LRS1, the Schottky emission mechanism was observed, while in LRS2, Ohmic conduction was observed. The physical model of the formation of permanent conducting filaments (CFs) consisting of oxygen vacancies in the device's active layer is proposed to explain the RS behavior. These findings reveal the low-cost development of high-density, non-volatile memory devices operated with very low power consumption that can be used to protect data against unauthorized software/hardware and hackers.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"10 ","pages":"Article 100125"},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermoelectric performance of Cu3InSnSe5 and MnSe pseudo-binary solid solution Cu3InSnSe5 和 MnSe 伪二元固溶体的热电性能
Materials Today Electronics Pub Date : 2024-11-07 DOI: 10.1016/j.mtelec.2024.100126
Guanzheng Luo, Wang Li, Yingchao Wei, Yao Dai, Wenjie Shu, Linyao Wu, Xin Li, Yubo Luo, Junyou Yang
{"title":"Thermoelectric performance of Cu3InSnSe5 and MnSe pseudo-binary solid solution","authors":"Guanzheng Luo,&nbsp;Wang Li,&nbsp;Yingchao Wei,&nbsp;Yao Dai,&nbsp;Wenjie Shu,&nbsp;Linyao Wu,&nbsp;Xin Li,&nbsp;Yubo Luo,&nbsp;Junyou Yang","doi":"10.1016/j.mtelec.2024.100126","DOIUrl":"10.1016/j.mtelec.2024.100126","url":null,"abstract":"<div><div>Cu<sub>3</sub>InSnSe<sub>5</sub> is a newly discovered copper-based diamond-like thermoelectric semiconductor, whose thermoelectric performance can be further enhanced by the MnSe alloying herein. We observed the formation of MnSe<sub>2</sub> precipitates that effectively scattered low-frequency phonons, which significantly reduced the lattice thermal conductivity at mid-to-low temperatures. While a high amount of MnSe alloying led to the formation of MnSe<sub>2</sub> precipitates which enhanced the phonons scattering, a smaller MnSe content improved the power factor in a certain as well. Ultimately, our research achieved a peak <em>ZT</em> of 1.00 and an average <em>ZT</em> of 0.50 over the 300–773 K temperature range by 10 mol.% MnSe alloyed Cu<sub>3</sub>InSnSe<sub>5</sub> pseudo-binary solid solution, demonstrating the potential of MnSe alloying for optimizing the thermoelectric performance of copper-based diamond-like semiconductor materials.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"10 ","pages":"Article 100126"},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monolayer nodal line semimetal AgTe as gate-reconfigurable ‘cold’ Ohmic contact to 2D semiconductors MoSi2N4 and WSi2N4 单层结线半金属 AgTe 作为二维半导体 MoSi2N4 和 WSi2N4 的栅极可重新配置的 "冷 "欧姆触点
Materials Today Electronics Pub Date : 2024-10-16 DOI: 10.1016/j.mtelec.2024.100123
Tong Su , Yueyan Li , Weiwei Zhao , Liemao Cao , Yee Sin Ang
{"title":"Monolayer nodal line semimetal AgTe as gate-reconfigurable ‘cold’ Ohmic contact to 2D semiconductors MoSi2N4 and WSi2N4","authors":"Tong Su ,&nbsp;Yueyan Li ,&nbsp;Weiwei Zhao ,&nbsp;Liemao Cao ,&nbsp;Yee Sin Ang","doi":"10.1016/j.mtelec.2024.100123","DOIUrl":"10.1016/j.mtelec.2024.100123","url":null,"abstract":"&lt;div&gt;&lt;div&gt;MoSi&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;N&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and WSi&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;N&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; are air-stable two-dimensional (2D) semiconductors promising for next-generation electronics applications. However, the challenge of forming high-quality Ohmic contacts with these materials must be addressed before their potential can be fully unlocked. In this work, we investigate the role of AgTe, a recently synthesized topological nodal line semimetal, as a high work function (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;M&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) semimetallic contact for MoSi&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;N&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and WSi&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;N&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; using first-principles density functional theory (DFT) simulations. Phonon dispersion and &lt;em&gt;ab initio&lt;/em&gt; molecular dynamics simulations confirm the structural stability of AgTe/MoSi&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;N&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and AgTe/WSi&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;N&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; heterostructures. The high-&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;M&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; nature of AgTe leads to &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-type Schottky contacts. We show that electrostatic gate-induced charge doping, which can be introduced using practically achievable gating conditions, can tune the heterostructure between &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-type and &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-type Ohmic contacts, thus suggesting the potential of AgTe/MoSi&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;N&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and AgTe/WSi&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;N&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; as gate-reconfigurable contact useful for CMOS device applications. Notably, the presence of a ‘mini gap’ above the semimetallic bands in AgTe enables the formation of &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-type ‘cold’ Ohmic contact which is useful for steep-slope device beyond the &lt;em&gt;Boltzmann’s tyranny&lt;/em&gt;. These findings reveal the potential of AgTe as an electrically tunable Ohmic contacts to MoSi&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;N&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"10 ","pages":"Article 100123"},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress in the development of metal halide perovskite electronics for sensing applications 开发用于传感应用的金属卤化物过氧化物电子学的最新进展
Materials Today Electronics Pub Date : 2024-09-29 DOI: 10.1016/j.mtelec.2024.100122
Albert Buertey Buer , Nana Yaw Asare Boateng , Benjamin Asafo-Adjei , Sooncheol Kwon, Jea Woong Jo
{"title":"Recent progress in the development of metal halide perovskite electronics for sensing applications","authors":"Albert Buertey Buer ,&nbsp;Nana Yaw Asare Boateng ,&nbsp;Benjamin Asafo-Adjei ,&nbsp;Sooncheol Kwon,&nbsp;Jea Woong Jo","doi":"10.1016/j.mtelec.2024.100122","DOIUrl":"10.1016/j.mtelec.2024.100122","url":null,"abstract":"<div><div>Metal–halide perovskites have attracted significant attention recently owing to their exceptional optoelectronic performance. Their unique optical and electronic properties, combined with their ease of fabrication and high sensitivity to varied stimuli, render them promising candidates for next-generation efficient sensors. These materials have demonstrated outstanding sensing performance, with record-breaking sensitivities, rapid response times, and superior selectivity. This review comprehensively evaluates the recent progress in the applications of metal-halide perovskite-based sensors. Furthermore, this study addresses the remaining challenges and future perspectives crucial for the advancement of metal–halide perovskites in sensing technologies.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"10 ","pages":"Article 100122"},"PeriodicalIF":0.0,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insight into the origins of mobility deterioration in indium phosphide-based epitaxial layer 洞察磷化铟外延层迁移率劣化的根源
Materials Today Electronics Pub Date : 2024-09-21 DOI: 10.1016/j.mtelec.2024.100121
Si Li , Yongkang Jiang , Hua Wei , Hanbao Liu , Xiaoda Ye , Xingkai Zhao , Feihong Chen , Jiayun Deng , Jie Yang , Chong Wang , Tingfang Liu , Tinglong Liu , Gang Tang , Shikun Pu , Qingju Liu , Feng Hui , Feng Qiu
{"title":"Insight into the origins of mobility deterioration in indium phosphide-based epitaxial layer","authors":"Si Li ,&nbsp;Yongkang Jiang ,&nbsp;Hua Wei ,&nbsp;Hanbao Liu ,&nbsp;Xiaoda Ye ,&nbsp;Xingkai Zhao ,&nbsp;Feihong Chen ,&nbsp;Jiayun Deng ,&nbsp;Jie Yang ,&nbsp;Chong Wang ,&nbsp;Tingfang Liu ,&nbsp;Tinglong Liu ,&nbsp;Gang Tang ,&nbsp;Shikun Pu ,&nbsp;Qingju Liu ,&nbsp;Feng Hui ,&nbsp;Feng Qiu","doi":"10.1016/j.mtelec.2024.100121","DOIUrl":"10.1016/j.mtelec.2024.100121","url":null,"abstract":"<div><p>Ultra-high mobility speciality is a critical figure of merit for ultrapure materials and high-speed optoelectronic devices. However, unintentional doping-inducing various scattering frequently deteriorates mobility capacity. Therefore, how to elucidate the origin of mobility deterioration is still an open and technically challenging issue. Here we report that unintentional-doping silicon ion would be propagated into the indium phosphide (InP)’s epitaxial layer via analysis of time-of-flight and dynamic secondary ion mass spectrometry. The unintentional silicon ion in the InP wafer surface is responsible for the subsequent InGaAs epitaxial layer's mobility attenuation. The first-principles calculations and Boltzmann transport theory prove that polar optical phonon scattering (Fröhlich scattering) in non-doping InGaAs is the dominant scattering mechanism at high temperatures over 100 K. In contrast, the low-temperature scattering process is dominated by ionized impurities scattering. The unintentional silicon ion improves the Fröhlich scattering-dominated critical temperature. Our findings provide insight into the mobility degeneration originating from unintentional pollution and underlying scattering mechanisms, which lay a solid foundation for developing high-grade, super-speed, and low-power photoelectronic devices.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"10 ","pages":"Article 100121"},"PeriodicalIF":0.0,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772949424000330/pdfft?md5=4ebd38ea3fa42fd920892c7af97a0674&pid=1-s2.0-S2772949424000330-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信