{"title":"A remark on the separable extension property","authors":"Jan van Mill , Roman Pol","doi":"10.1016/S1385-7258(87)80039-2","DOIUrl":"10.1016/S1385-7258(87)80039-2","url":null,"abstract":"<div><p>We present an example of a metrizable space having the separable extension property but which is not an Absolute Neighborhood Retract.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 2","pages":"Pages 193-196"},"PeriodicalIF":0.0,"publicationDate":"1987-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80039-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"106720062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Weak-type inequalities for Kantorovitch polynomials and related operators","authors":"Erich van Wickeren","doi":"10.1016/S1385-7258(87)80011-2","DOIUrl":"https://doi.org/10.1016/S1385-7258(87)80011-2","url":null,"abstract":"<div><p>Continuing previous investigations concerning Bernstein polynomials, the purpose of this paper is to establish the weak-type inequality (<em>f</em>∈<em>L</em><sup>p</sup>(0,1),<em>n</em>∈ℕ)<span><span><span><math><mrow><msub><mi>ω</mi><mi>ϕ</mi></msub><mo>(</mo><msup><mi>n</mi><mrow><mo>−</mo><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></mrow></msup><mo>,</mo><mi>f</mi><mo>)</mo><mo>≤</mo><msub><mi>Μ</mi><mi>p</mi></msub><msup><mi>n</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mstyle><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mrow></mrow></mstyle><mo>||</mo><msub><mi>K</mi><mi>K</mi></msub><mo>f</mo><mo>-</mo><mi>f</mi><mo>||</mo><mi>p</mi></mrow></math></span></span></span>in terms of the Kantorovitch polynomial <em>K</em><sub>k</sub>ƒ and the modulus of continuity (<em>ϕ</em><sup>2</sup>(<em>x</em>): = <em>x</em>(1 − <em>x</em>))<span><span><span><math><mrow><msub><mi>ω</mi><mi>ϕ</mi></msub><mo>(</mo><mi>t</mi><mo>,</mo><mi>f</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mrow><mo>sup</mo><mo></mo></mrow><mrow><mn>0</mn><mo><</mo><mi>h</mi><mo>≤</mo><mo>t</mo></mrow></munder><mo>|</mo><mo>|</mo><msubsup><mi>Δ</mi><mrow><mi>h</mi><mi>ϕ</mi></mrow><mn>2</mn></msubsup><mo>f</mo><mo>|</mo><msub><mo>|</mo><mi>p</mi></msub><mo>+</mo><munder><mrow><mi>sup</mi><mo></mo></mrow><mrow><mn>0</mn><mo><</mo><mi>h</mi><mo>≤</mo><msup><mi>t</mi><mo>2</mo></msup></mrow></munder><mo>|</mo><mo>|</mo><msubsup><mi>Δ</mi><mi>h</mi><mn>2</mn></msubsup><mi>f</mi><mo>|</mo><msub><mo>|</mo><mrow><mi>p</mi><mo>.</mo></mrow></msub></mrow></math></span></span></span>Such estimates which immediately imply well-known inverse results are also obtained for the Kantorovitch version of the Szász-Mirakjan and Baskakov operators, respectively.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 1","pages":"Pages 111-120"},"PeriodicalIF":0.0,"publicationDate":"1987-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80011-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92219979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Curves of twice the minimal class on principally polarized abelian varieties","authors":"G.E. Welters","doi":"10.1016/S1385-7258(87)80010-0","DOIUrl":"https://doi.org/10.1016/S1385-7258(87)80010-0","url":null,"abstract":"","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 1","pages":"Pages 87-109"},"PeriodicalIF":0.0,"publicationDate":"1987-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80010-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92221000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Eine kennzeichnung der oktavenebene","authors":"Hermann Hähl","doi":"10.1016/S1385-7258(87)80004-5","DOIUrl":"https://doi.org/10.1016/S1385-7258(87)80004-5","url":null,"abstract":"<div><p>We consider partitions of ℝ<sup>16</sup> into pairwise complementary 8-dimensional subspaces whose union covers ℝ<sup>16</sup> (or, equivalently, fiberings of %plane1D;4AE;<sup>15</sup> by great 7-spheres). It is shown that if such a partition is (globally) invariant by a closed subgroup of GL<sub>16</sub>(ℝ) locally isomorphic to SO<sub>7</sub>(ℝ,1), then it is linearly equivalent to the classical Hopf partition corresponding to the Cayley numbers %plane1D;4AA;, namely the system of lines through the origin in the affine Cayley plane over %plane1D;4AA;.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 1","pages":"Pages 29-39"},"PeriodicalIF":0.0,"publicationDate":"1987-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80004-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92353649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On some finite ramified coverings of Pn","authors":"Tsuyoshi Fujiwara","doi":"10.1016/S1385-7258(87)80002-1","DOIUrl":"10.1016/S1385-7258(87)80002-1","url":null,"abstract":"<div><p>Let <em>S</em> be a hypersurface in <em>P</em><sup><em>n</em></sup> (<em>n</em>≧3) with only normal crossings and let ƒ : <em>X</em><strong>P</strong><sup><em>n</em></sup> be a finite ramified covering which is unramified over <strong>P</strong><sup><em>n</em></sup> − <em>S</em>. Then S. Kawai has shown that there are neither regular 1-forms nor regular 2-forms on <em>X</em>. The aim of this article is to derive a stronger conclusion: <em>H</em><sup>0</sup>(<em>X,Ω</em><sub><em>X</em></sub><sup><em>p</em></sup>)= 0 for 1≦p<<em>n</em> , and moreover <em>H</em><sup>0</sup>(<em>X,Ω</em><sub><em>X</em></sub><sup><em>p</em></sup>)= 0 if deg <em>S</em>≦<em>n</em>+1.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 1","pages":"Pages 7-13"},"PeriodicalIF":0.0,"publicationDate":"1987-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80002-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109435202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The moduli space of curves of genus three together with an odd theta-characteristic is rational","authors":"Fabio Bardelli","doi":"10.1016/S1385-7258(87)80001-X","DOIUrl":"10.1016/S1385-7258(87)80001-X","url":null,"abstract":"<div><p>In this note we use a “normal form”, due to Sylvester, for the equation of a generic cubic surface in ℙ<sup>3</sup>(ℂ) to prove that %plane1D;4B0;= {moduli space of pairs (<em>S,P</em>) with <em>S</em> smooth cubic surface, <em>P</em> a point on <em>S</em>} is rational. We then prove that %plane1D;510;<sub>3</sub><sup>oth</sup> = {moduli space of curves of genus three together with one odd theta-characteristic} is birational to %plane1D;4B0; and so rational.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 1","pages":"Pages 1-5"},"PeriodicalIF":0.0,"publicationDate":"1987-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80001-X","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"106058468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-archimedean topologies of countable type and associated operators","authors":"N. de Grande-de Kimpe","doi":"10.1016/S1385-7258(87)80003-3","DOIUrl":"https://doi.org/10.1016/S1385-7258(87)80003-3","url":null,"abstract":"<div><p>Let <em>K</em> be a non-archimedean, non trivially valued, complete field. Given a dual pair of vector spaces (<em>E, F</em>) over <em>K</em> we study the finest locally convex topology of countable type %plane1D;4A5; on <em>E</em> such that (<em>E</em>%plane1D;4A5;′= <em>F</em> and, given a locally convex space <em>E</em>, %plane1D;4A5; we describe the finest topology of countable type on <em>E</em> coarser than %plane1D;4A5; It is also shown how the class (<em>S</em><sub>0</sub>) of spaces of countable type can be obtained from an operator ideal.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 1","pages":"Pages 15-28"},"PeriodicalIF":0.0,"publicationDate":"1987-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80003-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92353648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structure of completely distributive complete lattices","authors":"Roberto Moresco","doi":"10.1016/S1385-7258(87)80008-2","DOIUrl":"https://doi.org/10.1016/S1385-7258(87)80008-2","url":null,"abstract":"<div><p>Every completely distributive complete lattice is a subdirect product of copies of the lattice {0, 1} and the real unit interval.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 1","pages":"Pages 69-71"},"PeriodicalIF":0.0,"publicationDate":"1987-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80008-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92341382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A special basis for the Leech lattice","authors":"Harm Voskuil","doi":"10.1016/S1385-7258(87)80009-4","DOIUrl":"https://doi.org/10.1016/S1385-7258(87)80009-4","url":null,"abstract":"","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 1","pages":"Pages 73-86"},"PeriodicalIF":0.0,"publicationDate":"1987-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80009-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92341383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bornological spaces of non-Archimedean valued functions","authors":"A.K. Katsaras","doi":"10.1016/S1385-7258(87)80005-7","DOIUrl":"https://doi.org/10.1016/S1385-7258(87)80005-7","url":null,"abstract":"<div><p>Let <em>C(X,E)</em> be the space of all continuous functions from an ultraregular space <em>X</em> to a non-Archimedean locally convex space <em>E</em>. Necessary and/or sufficient conditions are given so that <em>C(X,E)</em>, with the topology of uniform convergence on compact sets or with the topology of simple convergence, is bornological or <em>c</em>-ultrabornological.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 1","pages":"Pages 41-50"},"PeriodicalIF":0.0,"publicationDate":"1987-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80005-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92361341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}