{"title":"百度标志","authors":"Hermann Hähl","doi":"10.1016/S1385-7258(87)80004-5","DOIUrl":null,"url":null,"abstract":"<div><p>We consider partitions of ℝ<sup>16</sup> into pairwise complementary 8-dimensional subspaces whose union covers ℝ<sup>16</sup> (or, equivalently, fiberings of %plane1D;4AE;<sup>15</sup> by great 7-spheres). It is shown that if such a partition is (globally) invariant by a closed subgroup of GL<sub>16</sub>(ℝ) locally isomorphic to SO<sub>7</sub>(ℝ,1), then it is linearly equivalent to the classical Hopf partition corresponding to the Cayley numbers %plane1D;4AA;, namely the system of lines through the origin in the affine Cayley plane over %plane1D;4AA;.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 1","pages":"Pages 29-39"},"PeriodicalIF":0.0000,"publicationDate":"1987-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80004-5","citationCount":"8","resultStr":"{\"title\":\"Eine kennzeichnung der oktavenebene\",\"authors\":\"Hermann Hähl\",\"doi\":\"10.1016/S1385-7258(87)80004-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider partitions of ℝ<sup>16</sup> into pairwise complementary 8-dimensional subspaces whose union covers ℝ<sup>16</sup> (or, equivalently, fiberings of %plane1D;4AE;<sup>15</sup> by great 7-spheres). It is shown that if such a partition is (globally) invariant by a closed subgroup of GL<sub>16</sub>(ℝ) locally isomorphic to SO<sub>7</sub>(ℝ,1), then it is linearly equivalent to the classical Hopf partition corresponding to the Cayley numbers %plane1D;4AA;, namely the system of lines through the origin in the affine Cayley plane over %plane1D;4AA;.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"90 1\",\"pages\":\"Pages 29-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80004-5\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385725887800045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725887800045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider partitions of ℝ16 into pairwise complementary 8-dimensional subspaces whose union covers ℝ16 (or, equivalently, fiberings of %plane1D;4AE;15 by great 7-spheres). It is shown that if such a partition is (globally) invariant by a closed subgroup of GL16(ℝ) locally isomorphic to SO7(ℝ,1), then it is linearly equivalent to the classical Hopf partition corresponding to the Cayley numbers %plane1D;4AA;, namely the system of lines through the origin in the affine Cayley plane over %plane1D;4AA;.