{"title":"Characters of groups with normal *-subgroups","authors":"Nico S. Hekster, Robert W. van der Waall","doi":"10.1016/S1385-7258(89)80003-4","DOIUrl":"https://doi.org/10.1016/S1385-7258(89)80003-4","url":null,"abstract":"","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 3","pages":"Pages 257-287"},"PeriodicalIF":0.0,"publicationDate":"1989-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(89)80003-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91974890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Four terms equations","authors":"Lianxiang Wang","doi":"10.1016/S1385-7258(89)80010-1","DOIUrl":"https://doi.org/10.1016/S1385-7258(89)80010-1","url":null,"abstract":"<div><p>We give the complete solutions to the diophantine equation <em>X+Y+Z=W</em> in coprime positive integers <em>X, Y, Z, W</em> such that each of the numbers <em>X, Y, Z, W</em> has prime factors 2 and 3 only. The solution with the largest value of <em>W</em> is 2<sup>3</sup>3<sup>3</sup> + 2<sup>9</sup> + 1= 3<sup>6</sup>. The method works for any pair of primes (<em>p, q</em>) in place of (2, 3).</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 3","pages":"Pages 355-361"},"PeriodicalIF":0.0,"publicationDate":"1989-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(89)80010-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92117771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterizations of Carleman operators","authors":"Dan Tudor Vuza","doi":"10.1016/S1385-7258(89)80009-5","DOIUrl":"https://doi.org/10.1016/S1385-7258(89)80009-5","url":null,"abstract":"<div><p>We prove an improved version of Korotkov's characterization of Carleman operators and we determine those bounded linear operators <em>U: L<sub>ϱ</sub>(μ)→L<sub>2</sub>(ν) (L<sub>ϱ</sub>(μ)</em> being a Banach function space) with the property that for every bounded linear operator <em>B</em> on <em>L<sub>2</sub>(ν)</em>, the restriction of <em>BU</em> to a given order ideal <em>E</em> in <em>L<sub>ϱ</sub>(μ)</em> is integral or regular as an operator from <em>E</em> to <em>L<sub>0</sub>(ν)</em>.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 3","pages":"Pages 343-354"},"PeriodicalIF":0.0,"publicationDate":"1989-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(89)80009-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92119390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two Carleson measure theorems for Hardy spaces","authors":"Miroljub Jevtić","doi":"10.1016/S1385-7258(89)80006-X","DOIUrl":"https://doi.org/10.1016/S1385-7258(89)80006-X","url":null,"abstract":"<div><p>The author characterizes two Carleson-type measures relative to Hardy spaces of functions, holomorphic in the unit ball of CN.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 3","pages":"Pages 315-321"},"PeriodicalIF":0.0,"publicationDate":"1989-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(89)80006-X","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92117770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A symmetric basis for the E6 root system","authors":"Joris Van der Jeugt","doi":"10.1016/S1385-7258(89)80005-8","DOIUrl":"10.1016/S1385-7258(89)80005-8","url":null,"abstract":"","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 3","pages":"Pages 309-314"},"PeriodicalIF":0.0,"publicationDate":"1989-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(89)80005-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"100951269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the approximation by continued fractions","authors":"H. Jager, C. Kraaikamp","doi":"10.1016/S1385-7258(89)80004-6","DOIUrl":"https://doi.org/10.1016/S1385-7258(89)80004-6","url":null,"abstract":"","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 3","pages":"Pages 289-307"},"PeriodicalIF":0.0,"publicationDate":"1989-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(89)80004-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91974891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"p-Adic nonconvex compactoids","authors":"W.H. Schikhof","doi":"10.1016/S1385-7258(89)80008-3","DOIUrl":"https://doi.org/10.1016/S1385-7258(89)80008-3","url":null,"abstract":"<div><p>A bounded subset <em>X</em> of a Banach space over a non-archimedean field ϰ is a compactoid if and only if each basic sequence in <em>X</em> tends to zero (Theorem 2). As a consequence the notions “weakly precompact’ and ‘precompact’ are identical for members of a wide class of ϰ-Banach spaces (Theorem 3).</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 3","pages":"Pages 339-342"},"PeriodicalIF":0.0,"publicationDate":"1989-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(89)80008-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91974893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Derivations on algebras of holomorphic functions","authors":"R.G.M. Brummelhuis, P.J. de Paepe","doi":"10.1016/S1385-7258(89)80001-0","DOIUrl":"https://doi.org/10.1016/S1385-7258(89)80001-0","url":null,"abstract":"<div><p>Suppose <em>U</em> is a domain in ℂ<sup><em>n</em></sup>, not necessarily pseudoconvex, and <em>D</em> is a derivation on the algebra %plane1D;4AA;(<em>U</em>) of holomorphic functions on <em>U</em>, i.e. <em>D</em> : %plane1D;4AA;(<em>U</em>)→%plane1D;4AA;(<em>U</em>) is additive and satisfies <em>Dfg=fDg+gDf</em> for all <em>ƒ,g ε %plane1D;4AA;(U)</em>. It is shown that there are <em>h<sub>1</sub>,h<sub>n</sub>ε%plane1D;4AA;(U)</em> such that <em>Df = Σ<sub>i=1</sub><sup>n</sup>h<sub>i</sub> ∂ƒ/∂<sub>Zi</sub></em> for all <em>ƒ ε %plane1D;4AA;(U)</em>. The same techniques are then applied to show that, for a Stein manifold Ω, the natural map from the space of global holomorphic sections of the holomorphic tangent bundle of Ω to the space of derivations on %plane1D;4AA;(Ω) is a bijection.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 3","pages":"Pages 237-242"},"PeriodicalIF":0.0,"publicationDate":"1989-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(89)80001-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92035798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generalized duality of some Banach function spaces","authors":"Lech Maligranda , Lars Erik Persson","doi":"10.1016/S1385-7258(89)80007-1","DOIUrl":"https://doi.org/10.1016/S1385-7258(89)80007-1","url":null,"abstract":"<div><p>The set of multipliers from one vector space to another vector space may be seen as a generalized dual space in the sense of Köthe. We give some properties of this kind of duality and prove precise estimates concerning generalized duality of <em>X<sup>P</sup></em>-spaces, Lebesgue, Lorentz, Marcinkiewicz and Orlicz spaces. We complement and unify several previous results of this kind.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 3","pages":"Pages 323-338"},"PeriodicalIF":0.0,"publicationDate":"1989-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(89)80007-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91962413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}