全纯函数代数上的导数

R.G.M. Brummelhuis, P.J. de Paepe
{"title":"全纯函数代数上的导数","authors":"R.G.M. Brummelhuis,&nbsp;P.J. de Paepe","doi":"10.1016/S1385-7258(89)80001-0","DOIUrl":null,"url":null,"abstract":"<div><p>Suppose <em>U</em> is a domain in ℂ<sup><em>n</em></sup>, not necessarily pseudoconvex, and <em>D</em> is a derivation on the algebra %plane1D;4AA;(<em>U</em>) of holomorphic functions on <em>U</em>, i.e. <em>D</em> : %plane1D;4AA;(<em>U</em>)→%plane1D;4AA;(<em>U</em>) is additive and satisfies <em>Dfg=fDg+gDf</em> for all <em>ƒ,g ε %plane1D;4AA;(U)</em>. It is shown that there are <em>h<sub>1</sub>,h<sub>n</sub>ε%plane1D;4AA;(U)</em> such that <em>Df = Σ<sub>i=1</sub><sup>n</sup>h<sub>i</sub> ∂ƒ/∂<sub>Zi</sub></em> for all <em>ƒ ε %plane1D;4AA;(U)</em>. The same techniques are then applied to show that, for a Stein manifold Ω, the natural map from the space of global holomorphic sections of the holomorphic tangent bundle of Ω to the space of derivations on %plane1D;4AA;(Ω) is a bijection.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 3","pages":"Pages 237-242"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(89)80001-0","citationCount":"5","resultStr":"{\"title\":\"Derivations on algebras of holomorphic functions\",\"authors\":\"R.G.M. Brummelhuis,&nbsp;P.J. de Paepe\",\"doi\":\"10.1016/S1385-7258(89)80001-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Suppose <em>U</em> is a domain in ℂ<sup><em>n</em></sup>, not necessarily pseudoconvex, and <em>D</em> is a derivation on the algebra %plane1D;4AA;(<em>U</em>) of holomorphic functions on <em>U</em>, i.e. <em>D</em> : %plane1D;4AA;(<em>U</em>)→%plane1D;4AA;(<em>U</em>) is additive and satisfies <em>Dfg=fDg+gDf</em> for all <em>ƒ,g ε %plane1D;4AA;(U)</em>. It is shown that there are <em>h<sub>1</sub>,h<sub>n</sub>ε%plane1D;4AA;(U)</em> such that <em>Df = Σ<sub>i=1</sub><sup>n</sup>h<sub>i</sub> ∂ƒ/∂<sub>Zi</sub></em> for all <em>ƒ ε %plane1D;4AA;(U)</em>. The same techniques are then applied to show that, for a Stein manifold Ω, the natural map from the space of global holomorphic sections of the holomorphic tangent bundle of Ω to the space of derivations on %plane1D;4AA;(Ω) is a bijection.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"92 3\",\"pages\":\"Pages 237-242\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(89)80001-0\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385725889800010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725889800010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

假设U是一个在n上的定义域,不一定是伪凸的,D是U上全纯函数在代数%plane1D;4AA;(U)上的一个导数,即D: %plane1D;4AA;(U)→%plane1D;4AA;(U)是可加的,并且对所有的f,g ε %plane1D;4AA;(U)满足Dfg=fDg+gDf。证明有h1,hnε%plane1D;4AA;(U)使得Df = Σi=1nhi∂φ /∂Zi对于所有的φ ε%plane1D;4AA;(U)。然后应用相同的技术来证明,对于Stein流形Ω,从Ω的全纯切束的整体全纯截面空间到%plane1D;4AA;(Ω)上的导数空间的自然映射是双射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivations on algebras of holomorphic functions

Suppose U is a domain in ℂn, not necessarily pseudoconvex, and D is a derivation on the algebra %plane1D;4AA;(U) of holomorphic functions on U, i.e. D : %plane1D;4AA;(U)→%plane1D;4AA;(U) is additive and satisfies Dfg=fDg+gDf for all ƒ,g ε %plane1D;4AA;(U). It is shown that there are h1,hnε%plane1D;4AA;(U) such that Df = Σi=1nhi ∂ƒ/∂Zi for all ƒ ε %plane1D;4AA;(U). The same techniques are then applied to show that, for a Stein manifold Ω, the natural map from the space of global holomorphic sections of the holomorphic tangent bundle of Ω to the space of derivations on %plane1D;4AA;(Ω) is a bijection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信