Carleman算子的表征

Dan Tudor Vuza
{"title":"Carleman算子的表征","authors":"Dan Tudor Vuza","doi":"10.1016/S1385-7258(89)80009-5","DOIUrl":null,"url":null,"abstract":"<div><p>We prove an improved version of Korotkov's characterization of Carleman operators and we determine those bounded linear operators <em>U: L<sub>ϱ</sub>(μ)→L<sub>2</sub>(ν) (L<sub>ϱ</sub>(μ)</em> being a Banach function space) with the property that for every bounded linear operator <em>B</em> on <em>L<sub>2</sub>(ν)</em>, the restriction of <em>BU</em> to a given order ideal <em>E</em> in <em>L<sub>ϱ</sub>(μ)</em> is integral or regular as an operator from <em>E</em> to <em>L<sub>0</sub>(ν)</em>.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 3","pages":"Pages 343-354"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(89)80009-5","citationCount":"0","resultStr":"{\"title\":\"Characterizations of Carleman operators\",\"authors\":\"Dan Tudor Vuza\",\"doi\":\"10.1016/S1385-7258(89)80009-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove an improved version of Korotkov's characterization of Carleman operators and we determine those bounded linear operators <em>U: L<sub>ϱ</sub>(μ)→L<sub>2</sub>(ν) (L<sub>ϱ</sub>(μ)</em> being a Banach function space) with the property that for every bounded linear operator <em>B</em> on <em>L<sub>2</sub>(ν)</em>, the restriction of <em>BU</em> to a given order ideal <em>E</em> in <em>L<sub>ϱ</sub>(μ)</em> is integral or regular as an operator from <em>E</em> to <em>L<sub>0</sub>(ν)</em>.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"92 3\",\"pages\":\"Pages 343-354\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(89)80009-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385725889800095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725889800095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了Korotkov关于Carleman算子的一个改进版本,并确定了那些有界线性算子U: Lϱ(μ)→L2(ν) (Lϱ(μ)是Banach函数空间),并证明了对于L2(ν)上的每一个有界线性算子B,在Lϱ(μ)中,BU对给定阶理想E的限制作为从E到L0(ν)的算子是积分或正则的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizations of Carleman operators

We prove an improved version of Korotkov's characterization of Carleman operators and we determine those bounded linear operators U: Lϱ(μ)→L2(ν) (Lϱ(μ) being a Banach function space) with the property that for every bounded linear operator B on L2(ν), the restriction of BU to a given order ideal E in Lϱ(μ) is integral or regular as an operator from E to L0(ν).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信