{"title":"Weak-type inequalities for Kantorovitch polynomials and related operators","authors":"Erich van Wickeren","doi":"10.1016/S1385-7258(87)80011-2","DOIUrl":null,"url":null,"abstract":"<div><p>Continuing previous investigations concerning Bernstein polynomials, the purpose of this paper is to establish the weak-type inequality (<em>f</em>∈<em>L</em><sup>p</sup>(0,1),<em>n</em>∈ℕ)<span><span><span><math><mrow><msub><mi>ω</mi><mi>ϕ</mi></msub><mo>(</mo><msup><mi>n</mi><mrow><mo>−</mo><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></mrow></msup><mo>,</mo><mi>f</mi><mo>)</mo><mo>≤</mo><msub><mi>Μ</mi><mi>p</mi></msub><msup><mi>n</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mstyle><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mrow></mrow></mstyle><mo>||</mo><msub><mi>K</mi><mi>K</mi></msub><mo>f</mo><mo>-</mo><mi>f</mi><mo>||</mo><mi>p</mi></mrow></math></span></span></span>in terms of the Kantorovitch polynomial <em>K</em><sub>k</sub>ƒ and the modulus of continuity (<em>ϕ</em><sup>2</sup>(<em>x</em>): = <em>x</em>(1 − <em>x</em>))<span><span><span><math><mrow><msub><mi>ω</mi><mi>ϕ</mi></msub><mo>(</mo><mi>t</mi><mo>,</mo><mi>f</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mrow><mo>sup</mo><mo></mo></mrow><mrow><mn>0</mn><mo><</mo><mi>h</mi><mo>≤</mo><mo>t</mo></mrow></munder><mo>|</mo><mo>|</mo><msubsup><mi>Δ</mi><mrow><mi>h</mi><mi>ϕ</mi></mrow><mn>2</mn></msubsup><mo>f</mo><mo>|</mo><msub><mo>|</mo><mi>p</mi></msub><mo>+</mo><munder><mrow><mi>sup</mi><mo></mo></mrow><mrow><mn>0</mn><mo><</mo><mi>h</mi><mo>≤</mo><msup><mi>t</mi><mo>2</mo></msup></mrow></munder><mo>|</mo><mo>|</mo><msubsup><mi>Δ</mi><mi>h</mi><mn>2</mn></msubsup><mi>f</mi><mo>|</mo><msub><mo>|</mo><mrow><mi>p</mi><mo>.</mo></mrow></msub></mrow></math></span></span></span>Such estimates which immediately imply well-known inverse results are also obtained for the Kantorovitch version of the Szász-Mirakjan and Baskakov operators, respectively.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 1","pages":"Pages 111-120"},"PeriodicalIF":0.0000,"publicationDate":"1987-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80011-2","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725887800112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Continuing previous investigations concerning Bernstein polynomials, the purpose of this paper is to establish the weak-type inequality (f∈Lp(0,1),n∈ℕ)in terms of the Kantorovitch polynomial Kkƒ and the modulus of continuity (ϕ2(x): = x(1 − x))Such estimates which immediately imply well-known inverse results are also obtained for the Kantorovitch version of the Szász-Mirakjan and Baskakov operators, respectively.