Weak-type inequalities for Kantorovitch polynomials and related operators

Erich van Wickeren
{"title":"Weak-type inequalities for Kantorovitch polynomials and related operators","authors":"Erich van Wickeren","doi":"10.1016/S1385-7258(87)80011-2","DOIUrl":null,"url":null,"abstract":"<div><p>Continuing previous investigations concerning Bernstein polynomials, the purpose of this paper is to establish the weak-type inequality (<em>f</em>∈<em>L</em><sup>p</sup>(0,1),<em>n</em>∈ℕ)<span><span><span><math><mrow><msub><mi>ω</mi><mi>ϕ</mi></msub><mo>(</mo><msup><mi>n</mi><mrow><mo>−</mo><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></mrow></msup><mo>,</mo><mi>f</mi><mo>)</mo><mo>≤</mo><msub><mi>Μ</mi><mi>p</mi></msub><msup><mi>n</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mstyle><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mrow></mrow></mstyle><mo>||</mo><msub><mi>K</mi><mi>K</mi></msub><mo>f</mo><mo>-</mo><mi>f</mi><mo>||</mo><mi>p</mi></mrow></math></span></span></span>in terms of the Kantorovitch polynomial <em>K</em><sub>k</sub>ƒ and the modulus of continuity (<em>ϕ</em><sup>2</sup>(<em>x</em>): = <em>x</em>(1 − <em>x</em>))<span><span><span><math><mrow><msub><mi>ω</mi><mi>ϕ</mi></msub><mo>(</mo><mi>t</mi><mo>,</mo><mi>f</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mrow><mo>sup</mo><mo>⁡</mo></mrow><mrow><mn>0</mn><mo>&lt;</mo><mi>h</mi><mo>≤</mo><mo>t</mo></mrow></munder><mo>|</mo><mo>|</mo><msubsup><mi>Δ</mi><mrow><mi>h</mi><mi>ϕ</mi></mrow><mn>2</mn></msubsup><mo>f</mo><mo>|</mo><msub><mo>|</mo><mi>p</mi></msub><mo>+</mo><munder><mrow><mi>sup</mi><mo>⁡</mo></mrow><mrow><mn>0</mn><mo>&lt;</mo><mi>h</mi><mo>≤</mo><msup><mi>t</mi><mo>2</mo></msup></mrow></munder><mo>|</mo><mo>|</mo><msubsup><mi>Δ</mi><mi>h</mi><mn>2</mn></msubsup><mi>f</mi><mo>|</mo><msub><mo>|</mo><mrow><mi>p</mi><mo>.</mo></mrow></msub></mrow></math></span></span></span>Such estimates which immediately imply well-known inverse results are also obtained for the Kantorovitch version of the Szász-Mirakjan and Baskakov operators, respectively.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 1","pages":"Pages 111-120"},"PeriodicalIF":0.0000,"publicationDate":"1987-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80011-2","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725887800112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Continuing previous investigations concerning Bernstein polynomials, the purpose of this paper is to establish the weak-type inequality (fLp(0,1),n∈ℕ)ωϕ(n1/2,f)Μpn1k=1n||KKf-f||pin terms of the Kantorovitch polynomial Kkƒ and the modulus of continuity (ϕ2(x): = x(1 − x))ωϕ(t,f):=sup0<ht||Δhϕ2f||p+sup0<ht2||Δh2f||p.Such estimates which immediately imply well-known inverse results are also obtained for the Kantorovitch version of the Szász-Mirakjan and Baskakov operators, respectively.

Kantorovitch多项式及相关算子的弱型不等式
延续先前关于Bernstein多项式的研究,本文的目的是建立弱型不等式(f∈Lp(0,1),n∈∈_1)ω φ (n−1/2,f)≤Μpn−1∑k=1n||KKf-f||引脚项kkf和连续性模(ϕ2(x): = x(1−x))ω φ (t,f):=sup (0) <h≤t||Δhϕ2f||p+sup (0 <h≤t2||Δh2f||p。这种立即意味着众所周知的逆结果的估计也分别为Szász-Mirakjan和Baskakov算子的Kantorovitch版本获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信