具有奇特征的三格曲线的模空间是有理的

Fabio Bardelli
{"title":"具有奇特征的三格曲线的模空间是有理的","authors":"Fabio Bardelli","doi":"10.1016/S1385-7258(87)80001-X","DOIUrl":null,"url":null,"abstract":"<div><p>In this note we use a “normal form”, due to Sylvester, for the equation of a generic cubic surface in ℙ<sup>3</sup>(ℂ) to prove that %plane1D;4B0;= {moduli space of pairs (<em>S,P</em>) with <em>S</em> smooth cubic surface, <em>P</em> a point on <em>S</em>} is rational. We then prove that %plane1D;510;<sub>3</sub><sup>oth</sup> = {moduli space of curves of genus three together with one odd theta-characteristic} is birational to %plane1D;4B0; and so rational.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 1","pages":"Pages 1-5"},"PeriodicalIF":0.0000,"publicationDate":"1987-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80001-X","citationCount":"2","resultStr":"{\"title\":\"The moduli space of curves of genus three together with an odd theta-characteristic is rational\",\"authors\":\"Fabio Bardelli\",\"doi\":\"10.1016/S1385-7258(87)80001-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this note we use a “normal form”, due to Sylvester, for the equation of a generic cubic surface in ℙ<sup>3</sup>(ℂ) to prove that %plane1D;4B0;= {moduli space of pairs (<em>S,P</em>) with <em>S</em> smooth cubic surface, <em>P</em> a point on <em>S</em>} is rational. We then prove that %plane1D;510;<sub>3</sub><sup>oth</sup> = {moduli space of curves of genus three together with one odd theta-characteristic} is birational to %plane1D;4B0; and so rational.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"90 1\",\"pages\":\"Pages 1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80001-X\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138572588780001X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138572588780001X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文利用Sylvester给出的广义三次曲面方程的“正规形式”,证明了%plane1D;4B0;={具有S个光滑三次曲面的对(S,P)的模空间,S}上的点P是有理的。然后证明了%plane1D;510; 30 ={3属曲线和一个奇特征曲线的模空间}与%plane1D;4B0;如此理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The moduli space of curves of genus three together with an odd theta-characteristic is rational

In this note we use a “normal form”, due to Sylvester, for the equation of a generic cubic surface in ℙ3(ℂ) to prove that %plane1D;4B0;= {moduli space of pairs (S,P) with S smooth cubic surface, P a point on S} is rational. We then prove that %plane1D;510;3oth = {moduli space of curves of genus three together with one odd theta-characteristic} is birational to %plane1D;4B0; and so rational.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信