{"title":"具有奇特征的三格曲线的模空间是有理的","authors":"Fabio Bardelli","doi":"10.1016/S1385-7258(87)80001-X","DOIUrl":null,"url":null,"abstract":"<div><p>In this note we use a “normal form”, due to Sylvester, for the equation of a generic cubic surface in ℙ<sup>3</sup>(ℂ) to prove that %plane1D;4B0;= {moduli space of pairs (<em>S,P</em>) with <em>S</em> smooth cubic surface, <em>P</em> a point on <em>S</em>} is rational. We then prove that %plane1D;510;<sub>3</sub><sup>oth</sup> = {moduli space of curves of genus three together with one odd theta-characteristic} is birational to %plane1D;4B0; and so rational.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 1","pages":"Pages 1-5"},"PeriodicalIF":0.0000,"publicationDate":"1987-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80001-X","citationCount":"2","resultStr":"{\"title\":\"The moduli space of curves of genus three together with an odd theta-characteristic is rational\",\"authors\":\"Fabio Bardelli\",\"doi\":\"10.1016/S1385-7258(87)80001-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this note we use a “normal form”, due to Sylvester, for the equation of a generic cubic surface in ℙ<sup>3</sup>(ℂ) to prove that %plane1D;4B0;= {moduli space of pairs (<em>S,P</em>) with <em>S</em> smooth cubic surface, <em>P</em> a point on <em>S</em>} is rational. We then prove that %plane1D;510;<sub>3</sub><sup>oth</sup> = {moduli space of curves of genus three together with one odd theta-characteristic} is birational to %plane1D;4B0; and so rational.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"90 1\",\"pages\":\"Pages 1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80001-X\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138572588780001X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138572588780001X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The moduli space of curves of genus three together with an odd theta-characteristic is rational
In this note we use a “normal form”, due to Sylvester, for the equation of a generic cubic surface in ℙ3(ℂ) to prove that %plane1D;4B0;= {moduli space of pairs (S,P) with S smooth cubic surface, P a point on S} is rational. We then prove that %plane1D;510;3oth = {moduli space of curves of genus three together with one odd theta-characteristic} is birational to %plane1D;4B0; and so rational.