在Pn的有限分支覆盖上

Tsuyoshi Fujiwara
{"title":"在Pn的有限分支覆盖上","authors":"Tsuyoshi Fujiwara","doi":"10.1016/S1385-7258(87)80002-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>S</em> be a hypersurface in <em>P</em><sup><em>n</em></sup> (<em>n</em>≧3) with only normal crossings and let ƒ : <em>X</em><strong>P</strong><sup><em>n</em></sup> be a finite ramified covering which is unramified over <strong>P</strong><sup><em>n</em></sup> − <em>S</em>. Then S. Kawai has shown that there are neither regular 1-forms nor regular 2-forms on <em>X</em>. The aim of this article is to derive a stronger conclusion: <em>H</em><sup>0</sup>(<em>X,Ω</em><sub><em>X</em></sub><sup><em>p</em></sup>)= 0 for 1≦p&lt;<em>n</em> , and moreover <em>H</em><sup>0</sup>(<em>X,Ω</em><sub><em>X</em></sub><sup><em>p</em></sup>)= 0 if deg <em>S</em>≦<em>n</em>+1.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 1","pages":"Pages 7-13"},"PeriodicalIF":0.0000,"publicationDate":"1987-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80002-1","citationCount":"2","resultStr":"{\"title\":\"On some finite ramified coverings of Pn\",\"authors\":\"Tsuyoshi Fujiwara\",\"doi\":\"10.1016/S1385-7258(87)80002-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>S</em> be a hypersurface in <em>P</em><sup><em>n</em></sup> (<em>n</em>≧3) with only normal crossings and let ƒ : <em>X</em><strong>P</strong><sup><em>n</em></sup> be a finite ramified covering which is unramified over <strong>P</strong><sup><em>n</em></sup> − <em>S</em>. Then S. Kawai has shown that there are neither regular 1-forms nor regular 2-forms on <em>X</em>. The aim of this article is to derive a stronger conclusion: <em>H</em><sup>0</sup>(<em>X,Ω</em><sub><em>X</em></sub><sup><em>p</em></sup>)= 0 for 1≦p&lt;<em>n</em> , and moreover <em>H</em><sup>0</sup>(<em>X,Ω</em><sub><em>X</em></sub><sup><em>p</em></sup>)= 0 if deg <em>S</em>≦<em>n</em>+1.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"90 1\",\"pages\":\"Pages 7-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80002-1\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385725887800021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725887800021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设S为Pn (n≧3)上只有正规交叉的超曲面,设φ: XPn为Pn−S上没有正规交叉的有限分支覆盖,则S. Kawai证明了X上既不存在正则1-形式,也不存在正则2-形式。本文的目的是推导出一个更有力的结论:对于1≤p≤l;n, H0(X,ΩXp)= 0,对于S≤n+1, H0(X,ΩXp)= 0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some finite ramified coverings of Pn

Let S be a hypersurface in Pn (n≧3) with only normal crossings and let ƒ : XPn be a finite ramified covering which is unramified over PnS. Then S. Kawai has shown that there are neither regular 1-forms nor regular 2-forms on X. The aim of this article is to derive a stronger conclusion: H0(X,ΩXp)= 0 for 1≦p<n , and moreover H0(X,ΩXp)= 0 if deg Sn+1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信