{"title":"可数类型的非阿基米德拓扑和相关操作符","authors":"N. de Grande-de Kimpe","doi":"10.1016/S1385-7258(87)80003-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>K</em> be a non-archimedean, non trivially valued, complete field. Given a dual pair of vector spaces (<em>E, F</em>) over <em>K</em> we study the finest locally convex topology of countable type %plane1D;4A5; on <em>E</em> such that (<em>E</em>%plane1D;4A5;′= <em>F</em> and, given a locally convex space <em>E</em>, %plane1D;4A5; we describe the finest topology of countable type on <em>E</em> coarser than %plane1D;4A5; It is also shown how the class (<em>S</em><sub>0</sub>) of spaces of countable type can be obtained from an operator ideal.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 1","pages":"Pages 15-28"},"PeriodicalIF":0.0000,"publicationDate":"1987-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80003-3","citationCount":"8","resultStr":"{\"title\":\"Non-archimedean topologies of countable type and associated operators\",\"authors\":\"N. de Grande-de Kimpe\",\"doi\":\"10.1016/S1385-7258(87)80003-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>K</em> be a non-archimedean, non trivially valued, complete field. Given a dual pair of vector spaces (<em>E, F</em>) over <em>K</em> we study the finest locally convex topology of countable type %plane1D;4A5; on <em>E</em> such that (<em>E</em>%plane1D;4A5;′= <em>F</em> and, given a locally convex space <em>E</em>, %plane1D;4A5; we describe the finest topology of countable type on <em>E</em> coarser than %plane1D;4A5; It is also shown how the class (<em>S</em><sub>0</sub>) of spaces of countable type can be obtained from an operator ideal.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"90 1\",\"pages\":\"Pages 15-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80003-3\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385725887800033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725887800033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-archimedean topologies of countable type and associated operators
Let K be a non-archimedean, non trivially valued, complete field. Given a dual pair of vector spaces (E, F) over K we study the finest locally convex topology of countable type %plane1D;4A5; on E such that (E%plane1D;4A5;′= F and, given a locally convex space E, %plane1D;4A5; we describe the finest topology of countable type on E coarser than %plane1D;4A5; It is also shown how the class (S0) of spaces of countable type can be obtained from an operator ideal.