{"title":"The moduli space of curves of genus three together with an odd theta-characteristic is rational","authors":"Fabio Bardelli","doi":"10.1016/S1385-7258(87)80001-X","DOIUrl":null,"url":null,"abstract":"<div><p>In this note we use a “normal form”, due to Sylvester, for the equation of a generic cubic surface in ℙ<sup>3</sup>(ℂ) to prove that %plane1D;4B0;= {moduli space of pairs (<em>S,P</em>) with <em>S</em> smooth cubic surface, <em>P</em> a point on <em>S</em>} is rational. We then prove that %plane1D;510;<sub>3</sub><sup>oth</sup> = {moduli space of curves of genus three together with one odd theta-characteristic} is birational to %plane1D;4B0; and so rational.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 1","pages":"Pages 1-5"},"PeriodicalIF":0.0000,"publicationDate":"1987-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80001-X","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138572588780001X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this note we use a “normal form”, due to Sylvester, for the equation of a generic cubic surface in ℙ3(ℂ) to prove that %plane1D;4B0;= {moduli space of pairs (S,P) with S smooth cubic surface, P a point on S} is rational. We then prove that %plane1D;510;3oth = {moduli space of curves of genus three together with one odd theta-characteristic} is birational to %plane1D;4B0; and so rational.