材料科学最新文献

筛选
英文 中文
Reconfiguring van der Waals Metal–Semiconductor Contacts via Selenium Intercalation/Deintercalation Post-Treatment
IF 17.1 1区 材料科学
ACS Nano Pub Date : 2024-12-21 DOI: 10.1021/acsnano.4c15117
Gihyeon Kwon, Hyeon-Sik Kim, Kwangsik Jeong, Sewoong Oh, Dajung Kim, Woochan Koh, Hyunjun Park, Seongil Im, Mann-Ho Cho
{"title":"Reconfiguring van der Waals Metal–Semiconductor Contacts via Selenium Intercalation/Deintercalation Post-Treatment","authors":"Gihyeon Kwon, Hyeon-Sik Kim, Kwangsik Jeong, Sewoong Oh, Dajung Kim, Woochan Koh, Hyunjun Park, Seongil Im, Mann-Ho Cho","doi":"10.1021/acsnano.4c15117","DOIUrl":"https://doi.org/10.1021/acsnano.4c15117","url":null,"abstract":"To achieve the commercialization of two-dimensional (2D) semiconductors, the identification of an appropriate combination of 2D semiconductors and three-dimensional (3D) metals is crucial. Furthermore, understanding the van der Waals (vdW) interactions between these materials in thin-film semiconductor processes is essential. Optimizing these interactions requires precise control over the properties of the vdW interface through specific pre- or post-treatment methods. This study utilizes Se-environment annealing as a post-treatment technique, which allows for modification of the vdW gap distance and enhancement of the stability of the interfacial structure through the process of Se intercalation and deintercalation at the 2D–3D interface. The depth of Se intercalation and deintercalation is adjusted by varying the temperature and duration of the postannealing process in an Se environment. This precise control over the process enables the effective metallization of 2D semiconductors. The results indicate that expanding the vdW gap and stabilizing the interface structure through this post-treatment significantly improve the metal contact properties in devices such as field-effect transistors and photovoltaic Schottky diodes by minimizing metal-induced gap states, thus reducing Fermi level pinning. The application of Se intercalation and deintercalation techniques achieves an exceptionally low contact resistance of 773 Ω·μm between p-type WSe<sub>2</sub> and Au. Additionally, the integration of doping-free WSe<sub>2</sub> complementary metal-oxide-semiconductor (CMOS) circuits using Se-environment annealing and blocking layers is demonstrated, establishing a promising advancement in semiconductor technology.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"24 1","pages":""},"PeriodicalIF":17.1,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional Carbon-Based Covalent Bridging Bonds Unlocking Superior Sodium-Ion Storage
IF 11.9 2区 材料科学
Journal of Materials Chemistry A Pub Date : 2024-12-21 DOI: 10.1039/d4ta07030e
Jinliang Zhu, Manchuan Guo, Miao Hu, Fang Fu, Kerou Qiu, Shijian Wang, Guoxiu Wang, Bing Sun
{"title":"Functional Carbon-Based Covalent Bridging Bonds Unlocking Superior Sodium-Ion Storage","authors":"Jinliang Zhu, Manchuan Guo, Miao Hu, Fang Fu, Kerou Qiu, Shijian Wang, Guoxiu Wang, Bing Sun","doi":"10.1039/d4ta07030e","DOIUrl":"https://doi.org/10.1039/d4ta07030e","url":null,"abstract":"The development of sodium-ion batteries has gained significant momentum as a promising alternative to lithium-ion batteries, particularly for large-scale energy storage. However, the advancement of sodium-ion batteries is impeded by challenges associated with the performance of electrode materials, especially conversion-type materials such as transition metal oxides and dichalcogenides. These materials often suffer from severe volume expansion during cycling, poor electronic conductivity, and instability at the electrode/electrolyte interface. Surface modification with carbonous materials has been demonstrated to be an effective strategy to solve these challenges. This review explores the transformative role of interfacial chemical bridge bonds, particularly C−X−M bonds (where C represents carbon; X represents elements like S, O, N, P and Se; and M represents transition metals) for performance enhancement. By forming strong covalent connections between carbon materials and transition metal compounds, the carbon-coated conversion-type anode materials show enhanced structural stability, improved electronic conductivity and reduced charge transfer resistance. This review also covers advanced characterisation techniques applied to characterise and analyse these bonds, offering a detailed understanding of their contributions to sodium-ion storage. Additionally, challenges and prospects in this field are discussed for optimising electrode materials through the strategic implementation of chemical bridge bonds, providing valuable insights for advancing the next-generation high-performance sodium-ion batteries.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"32 1","pages":""},"PeriodicalIF":11.9,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A production-oriented review of high-frequency measurement methods for forest products
IF 2.4 3区 农林科学
European Journal of Wood and Wood Products Pub Date : 2024-12-21 DOI: 10.1007/s00107-024-02176-x
Kari Hyll
{"title":"A production-oriented review of high-frequency measurement methods for forest products","authors":"Kari Hyll","doi":"10.1007/s00107-024-02176-x","DOIUrl":"10.1007/s00107-024-02176-x","url":null,"abstract":"<div><p>Forest products measurements based on high-frequency techniques such as microwaves, radio waves or electrical impedance spectroscopy is a growing and maturing field. As high-frequency moisture content meters are being commercialized, the question arises if similar technology can be used to measure additional forest products properties. This review aims to survey literature on high-frequency measurements of properties such as density, spiral grain and heartwood content. Applications to primary forest products such as logs and wood chips are here prioritized over secondary products such as sawn timber and pellets. To promote technical and commercial relevance, the literature search focuses on peer-reviewed and grey literature published within the last twenty years and on commercially available measurement systems. Furthermore, this review focuses on applications under production conditions, taking environmental, logistical, and economic factors into account. High-frequency methods are generally fast, non-destructive, harmless, insensitive to disturbances, and allow for interior inspection and bulk measurement. Disadvantages include high operator skill-level, difficulty in separating frozen and unfrozen material, as well as insufficient studies carried out in a production environment. Moisture content and density measurements are mature applications with high demonstrated accuracy. Spiral grain, knot characterization and bark thickness show potential. The measurement of decay, foreign objects, tree species and chemical analysis of resin or heartwood content need further evaluation, while the measurement of strength properties is unlikely to have sufficient accuracy to compete with other techniques. Promising applications include measurement through large volumes of material, for example in wheel loader buckets or on trucks.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00107-024-02176-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing seawater electrolysis with electronically tuned Co3O4 -NiOx heterostructures
IF 6.7 2区 材料科学
Applied Surface Science Pub Date : 2024-12-21 DOI: 10.1016/j.apsusc.2024.162162
Hongji Peng, Xiaoliang Zhang, Bingrong Wang, Yang Cao, Mingyu wang, Delun Chen, Xiaohong wang, Jinchun Tu
{"title":"Optimizing seawater electrolysis with electronically tuned Co3O4 -NiOx heterostructures","authors":"Hongji Peng, Xiaoliang Zhang, Bingrong Wang, Yang Cao, Mingyu wang, Delun Chen, Xiaohong wang, Jinchun Tu","doi":"10.1016/j.apsusc.2024.162162","DOIUrl":"https://doi.org/10.1016/j.apsusc.2024.162162","url":null,"abstract":"In seawater electrolysis for hydrogen production, the competition between chlorine evolution and oxygen evolution reaction (OER) at the anode limits its hydrogen yield and system stability. To address this, we optimized the anode material by modulating the surface electronic structure of the active sites of Co<sub>3</sub>O<sub>4</sub> using atomic layer deposition (ALD) technology. By introducing the atomic layers of NiO<sub>x</sub> species, this approach results in the synthesis of a NiO<sub>x</sub>@Co<sub>3</sub>O<sub>4</sub>/Carbon cloth (CC) heterojunction, which serves as an effective oxygen evolution reaction electrocatalyst for high-performance seawater electrolysis. Adjusting the deposition cycles creates unique material interfaces that facilitate the transformation of reaction intermediate. The NiO<sub>x</sub>@Co<sub>3</sub>O<sub>4</sub>/CC heterostructure demonstrates superior catalytic performance over single-phase materials, which is attributed to its unique Ni-O-Co interface, showing low overpotentials of 204 mV in alkaline freshwater and 235 mV in seawater solutions at 10 mA cm<sup>−2</sup>, 285 mV in alkaline freshwater and 329 mV in seawater solutions at 100 mA cm<sup>−2</sup>. In addition, the incorporation of NiO<sub>x</sub> endowed the material with enhanced overall durability and corrosion resistance, reducing Cl-related species adsorption. After 300 h of chronoamperometric testing, the voltage remained stable, indicating its potential as an ideal electrocatalyst for seawater electrolysis under alkaline conditions.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"19 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linear and non-linear response of quadratic Lindbladians
IF 5.7 1区 物理与天体物理
npj Quantum Materials Pub Date : 2024-12-21 DOI: 10.1038/s41535-024-00709-4
Spenser Talkington, Martin Claassen
{"title":"Linear and non-linear response of quadratic Lindbladians","authors":"Spenser Talkington, Martin Claassen","doi":"10.1038/s41535-024-00709-4","DOIUrl":"https://doi.org/10.1038/s41535-024-00709-4","url":null,"abstract":"<p>Quadratic Lindbladians encompass a rich class of dissipative electronic and bosonic quantum systems, which have been predicted to host new and exotic physics. In this study, we develop a Lindblad-Keldysh spectroscopic response formalism for open quantum systems that elucidates their steady-state response properties and dissipative phase transitions via finite-frequency linear and non-linear probes. As illustrative examples, we utilize this formalism to calculate the (1) density and dynamic spin susceptibilities of a boundary driven XY model at and near criticality, (2) linear and non-linear optical responses in Bernal bilayer graphene coupled to dissipative leads, and (3) steady state susceptibilities in a bosonic optical lattice. We find that the XY model spin density wavelength diverges with critical exponent 1/2, and there are gapless dispersive modes in the dynamic spin response that originate from the underlying spin density wave order; additionally the dispersing modes of the weak and ultra-strong dissipation limits exhibit a striking correspondence since the boundary dissipators couple only weakly to the bulk in both cases. In the optical response of the Bernal bilayer, we find that the diamagnetic response can decrease with increasing occupation, as opposed to in closed systems where the response increases monotonically with occupation; we study the effect of second harmonic generation and shift current and find that these responses, forbidden in centrosymmetric closed systems, can manifest in these open systems as a result of dissipation. We compare this formalism to its equilibrium counterpart and draw analogies between these non-interacting open systems and strongly interacting closed systems.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"24 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing High-voltage Halide-based Solid-state Batteries: Interfacial Challenges, Material Innovations, and Applications
IF 20.4 1区 材料科学
Energy Storage Materials Pub Date : 2024-12-21 DOI: 10.1016/j.ensm.2024.103980
Yue Gong, Changtai Zhao, Dawei Wang, Xinmiao Wang, Zaifa Wang, Yanlong Wu, Yu Xia, Qihang Jing, Yue Ji, Yingying Jiang, Jianwen Liang, Xiaona Li, Tao Jiang, Xueying Sun, Ximin Zhai, Huanli Sun, Xueliang Sun
{"title":"Advancing High-voltage Halide-based Solid-state Batteries: Interfacial Challenges, Material Innovations, and Applications","authors":"Yue Gong, Changtai Zhao, Dawei Wang, Xinmiao Wang, Zaifa Wang, Yanlong Wu, Yu Xia, Qihang Jing, Yue Ji, Yingying Jiang, Jianwen Liang, Xiaona Li, Tao Jiang, Xueying Sun, Ximin Zhai, Huanli Sun, Xueliang Sun","doi":"10.1016/j.ensm.2024.103980","DOIUrl":"https://doi.org/10.1016/j.ensm.2024.103980","url":null,"abstract":"All-solid-state batteries represent a promising avenue for next-generation energy storage systems, offering the potential for high energy density and enhanced safety. Among solid-state electrolytes, halide solid-state electrolytes stand out due to their superior ionic conductivities, oxidation stability, and mechanical moldability. However, several challenges remain, particularly at the interface between halide solid-state electrolytes and ultra-high voltage cathodes, resulting in suboptimal electrochemical performance. This review systematically examines the interfacial issues that hinder the performance of halide-based all-solid-state batteries, focusing on interfacial reactions, mechanical failure, and suboptimal ion/electron transport. Furthermore, we explore three strategies to address these challenges: electrolyte design and refinement, cathode surface modification, and composite cathode preparation. We also discuss the practical challenges of transitioning from laboratory research to industrial-scale applications, offering a roadmap for future advancements in high-performance halide-based all-solid-state batteries.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"55 1","pages":""},"PeriodicalIF":20.4,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Binary solvents of anhydrous ethanol and propylene carbonate for electrolytes of amorphous WO3 films to improve electrochromic performance
IF 6.6 3区 材料科学
Electrochimica Acta Pub Date : 2024-12-21 DOI: 10.1016/j.electacta.2024.145542
Yu Liu, Longlong Chen, Jiangbin Su, Jinmei Bai, Zuming He
{"title":"Binary solvents of anhydrous ethanol and propylene carbonate for electrolytes of amorphous WO3 films to improve electrochromic performance","authors":"Yu Liu, Longlong Chen, Jiangbin Su, Jinmei Bai, Zuming He","doi":"10.1016/j.electacta.2024.145542","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145542","url":null,"abstract":"In this study, amorphous WO<sub>3</sub> thin films were deposited on indium-tin oxide substrates using radio frequency magnetron sputtering. Anhydrous ethanol (AE) and propylene carbonate (PC) served as binary solvents, with the WO<sub>3</sub> films evaluated in AE+PC-LiClO<sub>4</sub> electrolytes. By adjusting the volume percentage of AE, the physical properties of the electrolytes were modified to improve the fluidity and wetting behavior. The analysis of several aspects, such as migration of ions, capillary flow of electrolyte and electrochemical reaction rate, highlights the important influence of AE+PC binary solvent in reducing the response time. Notably, WO<sub>3</sub> films in AE+PC-LiClO<sub>4</sub> electrolyte with a 7/8 volume percentage of AE demonstrated exceptional optical modulation (Δ<em>T</em>=75.7%) and fast response times (<em>t</em><sub>c</sub>=6.41 s, <em>t</em><sub>b</sub>=2.29 s), alongside shortened the diffusion path, increased ion diffusion coefficients (<em>D</em><sub>a</sub>=4.4678 × 10<sup>−10</sup> cm<sup>2</sup>/s, <em>D</em><sub>c</sub> =8.2968 × 10<sup>−10</sup> cm<sup>2</sup>/s) and electrochemical active area. Based on these efforts, the feasibility of applying AE+PC binary solvent to WO<sub>3</sub> electrochromic thin films has been confirmed. These results offer valuable insights for the development of efficient electrolytes and their application in electrochromic devices.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"113 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligence guided search for van der Waals materials with high optical anisotropy.
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-12-20 DOI: 10.1039/d4mh01332h
Liudmila A Bereznikova, Ivan A Kruglov, Georgy A Ermolaev, Ivan Trofimov, Congwei Xie, Arslan Mazitov, Gleb Tselikov, Anton Minnekhanov, Alexey P Tsapenko, Maxim Povolotsky, Davit A Ghazaryan, Aleksey V Arsenin, Valentyn S Volkov, Kostya S Novoselov
{"title":"Artificial intelligence guided search for van der Waals materials with high optical anisotropy.","authors":"Liudmila A Bereznikova, Ivan A Kruglov, Georgy A Ermolaev, Ivan Trofimov, Congwei Xie, Arslan Mazitov, Gleb Tselikov, Anton Minnekhanov, Alexey P Tsapenko, Maxim Povolotsky, Davit A Ghazaryan, Aleksey V Arsenin, Valentyn S Volkov, Kostya S Novoselov","doi":"10.1039/d4mh01332h","DOIUrl":"https://doi.org/10.1039/d4mh01332h","url":null,"abstract":"<p><p>The exploration of van der Waals (vdW) materials, renowned for their unique optical properties, is pivotal for advanced photonics. These materials exhibit exceptional optical anisotropy, both in-plane and out-of-plane, making them an ideal platform for novel photonic applications. However, the manual search for vdW materials with giant optical anisotropy is a labor-intensive process unsuitable for the fast screening of materials with unique properties. Here, we leverage geometrical and machine learning (ML) approaches to streamline this search, employing deep learning architectures, including the recently developed Atomistic Line Graph Neural Network. Within the geometrical approach, we clustered vdW materials based on in-plane and out-of-plane birefringence values and correlated optical anisotropy with crystallographic parameters. The more accurate ML model demonstrates high predictive capability, validated through density functional theory and ellipsometry measurements. Experimental verification with 2H-MoTe<sub>2</sub> and CdPS<sub>3</sub> confirms the theoretical predictions, underscoring the potential of ML in discovering and optimizing vdW materials with unprecedented optical performance.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combined Exsolution and Electrodeposition Strategy for Enhancing Electrocatalytic Activity of Ti-Based Perovskite Oxides in Oxygen and Hydrogen Evolution Reactions.
IF 14.3 1区 材料科学
Advanced Science Pub Date : 2024-12-20 DOI: 10.1002/advs.202410535
Shangshang Zuo, Chenchen Wang, Zhi Xia, Jiaxin Ding, Aaron B Naden, John T S Irvine
{"title":"Combined Exsolution and Electrodeposition Strategy for Enhancing Electrocatalytic Activity of Ti-Based Perovskite Oxides in Oxygen and Hydrogen Evolution Reactions.","authors":"Shangshang Zuo, Chenchen Wang, Zhi Xia, Jiaxin Ding, Aaron B Naden, John T S Irvine","doi":"10.1002/advs.202410535","DOIUrl":"https://doi.org/10.1002/advs.202410535","url":null,"abstract":"<p><p>The significant interest in perovskite oxides stems from their compositional and structural flexibility, particularly in the field of electrochemistry. In this study, the double E strategy (exsolution and electrodeposition strategies) is successfully devised for synthesizing perovskite-based bifunctional electrocatalysts, enabling simultaneous OER and HER applications with exceptional catalytic performance. The synthesized R-LCTFe/Ni catalyst exhibits outstanding electrocatalytic activity, delivering low overpotentials of 349 and 309 mV at 10 mA cm<sup>-2</sup> for OER and HER, respectively, indicating substantial improvements in the inherent electrocatalytic activity. Moreover, the impressive stability of R-LCTFe/Ni under alkaline conditions underscores its potential for practical water electrolysis applications. The superior bifunctional electrocatalytic performance can be attributed to the reduced charge transfer resistance and the synergistic cooperation between exsolved Fe nanoparticles and electrodeposited Ni compounds. The successful development of the R-LCTFe/Co catalyst further confirms the transferability of the double E strategy. Compared to R-LCTFe/Ni, the overpotential of R-LCTFe/Co is 58 mV higher for OER, yet 48 mV lower for HER at a current density of 10 mA cm<sup>-2</sup>. This study provides an efficient and promising approach for the fabrication of highly active perovskite-based electrocatalysts, contributing valuable insights into the design of bifunctional electrocatalysts for OER and HER.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2410535"},"PeriodicalIF":14.3,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchical Targeting Nanodrug with Holistic DNA Protection for Effective Treatment of Acute Kidney Injury.
IF 14.3 1区 材料科学
Advanced Science Pub Date : 2024-12-20 DOI: 10.1002/advs.202411254
Qiaohui Chen, Yongqi Yang, Xiaohong Ying, Changkun Huang, Jianlin Chen, Jue Wang, Ziyu Wu, Wan Zeng, Chenxi Miao, Xiaojing Shi, Yayun Nan, Qiong Huang, Kelong Ai
{"title":"Hierarchical Targeting Nanodrug with Holistic DNA Protection for Effective Treatment of Acute Kidney Injury.","authors":"Qiaohui Chen, Yongqi Yang, Xiaohong Ying, Changkun Huang, Jianlin Chen, Jue Wang, Ziyu Wu, Wan Zeng, Chenxi Miao, Xiaojing Shi, Yayun Nan, Qiong Huang, Kelong Ai","doi":"10.1002/advs.202411254","DOIUrl":"https://doi.org/10.1002/advs.202411254","url":null,"abstract":"<p><p>Acute kidney injury (AKI) manifests a hallmark pathological feature of extensive and severe DNA damage in renal tubules, primarily induced by the excessive of toxic reactive oxygen species (ROS) from the mitochondrial electron transport chain. The kidney's complex intricate physiological architecture and the heterogeneous intracellular environment pose significant challenges for effective sequential and high-resolution drug delivery-an urgent issue that remains unresolved. To address this, a hierarchical-targeting antioxidant nanodrug has been developed with a folic acid moiety (HAND) designed for high-resolution drug delivery in AKI treatment. For the first time, HAND enables sequential targeting from the kidney to the most severely damaged proximal tubular epithelial cells (PTECs), ultimately concentrating in the DNA-rich mitochondria and nucleus. As a result, HAND effectively scavenges ROS in situ, protecting both mitochondria and nuclei along with their vital genetic material. This action restores mitochondrial function, mitigates DNA oxidation and fragmentation, reduces apoptosis, and inhibits cGAS/STING-mediated sterile inflammation. Consequently, HAND demonstrates remarkable efficacy in safeguarding injured kidneys during AKI. Overall, this work pioneers a hierarchical, high-resolution antioxidant strategy, providing innovative guidance for the development of AKI therapies.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2411254"},"PeriodicalIF":14.3,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信