Anoop S Kumar, K Ramaswamy, Dhvani B Purohit, Priyadarshini Bais, K Venkatesham, Neha Mohiuddin, S Rajesh Kumar, R Ratheesh, Ajay Kaushal
{"title":"Recovery of lithium hydroxide from discarded lithium-ion batteries","authors":"Anoop S Kumar, K Ramaswamy, Dhvani B Purohit, Priyadarshini Bais, K Venkatesham, Neha Mohiuddin, S Rajesh Kumar, R Ratheesh, Ajay Kaushal","doi":"10.1007/s12034-024-03356-4","DOIUrl":"10.1007/s12034-024-03356-4","url":null,"abstract":"<div><p>Recovery of lithium (Li) compounds from various Li resources is attracting attention due to the increased demand in Li-ion battery industry. Current work presents an innovative route for selective recovery of lithium content in the form of lithium hydroxide monohydrate (LiOH·H<sub>2</sub>O) from discarded LIBs. Lithium carbonate (Li<sub>2</sub>CO<sub>3</sub>) with purity > 99% is recovered from black mass. The recovered Li<sub>2</sub>CO<sub>3</sub> is then crystallised to LiOH·H<sub>2</sub>O by using calcium hydroxide (Ca(OH)<sub>2</sub>) as the base. The method comprises of: (i) pre-treatment of LIB black mass powder; (ii) selective extraction of Li content from black mass; (iii) crystallisation and solid–liquid separation to recover LiOH·H<sub>2</sub>O as final recovered product. A total of 0.1933 wt.% impurities comprising of Ca, Al, Cu and Fe were detected in the recovered product. Elemental analysis at each processing step was carried out using inductively coupled plasma-optical emission spectroscopy. Structural properties of the recovered materials are analysed by using X-ray diffraction, field emission scanning electron microscopy. Fourier-transform infrared spectroscopy spectrum of recovered product was found consistent with the formation of LiOH·H<sub>2</sub>O. The LiOH·H<sub>2</sub>O is successfully recovered from discarded LIBs with purity of 99.8%, which finds its potential use as secondary raw material in battery manufacturing, Li-based high temperature grease manufacturing, carbon dioxide scrubbing in space craft and submarines, etc.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction: Design and development of solidly mounted bulk acoustic wave resonator (SMR)-based ammonia gas sensor","authors":"Vinita, Jitendra Singh","doi":"10.1007/s12034-024-03380-4","DOIUrl":"10.1007/s12034-024-03380-4","url":null,"abstract":"","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Facile synthesis of MOF-derived Co9S8/Ni3S2/N-doped carbon composites for supercapacitors","authors":"D Wei, Z F Zhou, H H Ma, W B Xu, F M Ren","doi":"10.1007/s12034-024-03364-4","DOIUrl":"10.1007/s12034-024-03364-4","url":null,"abstract":"<p>Transition metal sulphides derived from metal–organic frameworks (MOFs) have gained increasing attention as promising electrode materials for energy storage, owing to their elevated theoretical capacitance and exceptional electrochemical features. Herein, a simple dual organic ligand strategy and controllable pyrolysis treatment were used to prepare porous micro-rods Co<sub>9</sub>S<sub>8</sub>/Ni<sub>3</sub>S<sub>2</sub>/NC-T (T denotes for temperature) composite materials. Their structure and composition can be precisely controlled by adjusting the pyrolysis temperature. Co<sub>9</sub>S<sub>8</sub>/Ni<sub>3</sub>S<sub>2</sub>/NC-T composite materials possess rich pore structures, unique three-dimensional carbon conductive networks and synergistic effects of Co<sub>9</sub>S<sub>8</sub> and Ni<sub>3</sub>S<sub>2</sub>. Experimental results of cyclic voltammetry revealed that the bimetal sulphides in Co<sub>9</sub>S<sub>8</sub>/Ni<sub>3</sub>S<sub>2</sub>/NC-T can provide substantial redox pseudocapacitance for electrochemical reactions. Electrochemical tests indicated that the optimal carbonization temperature was 700°C, and the Co<sub>9</sub>S<sub>8</sub>/Ni<sub>3</sub>S<sub>2</sub>/NC-700 electrode material has the highest specific capacity of 2288 F g<sup>−1</sup> at a current density of 1 A g<sup>−1</sup> and an excellent rate capability with retention of about 61.2% at a current density of 10 A g<sup>−1</sup>. This study provides methodological guidance for the rational composition control and unique structure of MOF-derived materials for supercapacitors.</p>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of SiO2 nanofibre fillers with low-thermal conductivity by regulating heat-treatment process","authors":"YIFAN WU, YANGFAN PAN, JUNXIA GUO, YONGQIANG MENG, HONGJUN HUANG","doi":"10.1007/s12034-024-03366-2","DOIUrl":"10.1007/s12034-024-03366-2","url":null,"abstract":"<div><p>Silicon dioxide (SiO<sub>2</sub>) is considered to be a promising material for thermal insulation. However, the application scenarios of insulation materials are limited, and how to enhance their practical application value has been an attractive research topic. In this work, SiO<sub>2</sub> nanofibres were prepared by the electrospinning technology. Effects of different heat-treatment parameters on SiO<sub>2</sub> crystal transformation, nanofibres’ diameter and thermal conductivity were investigated, and the thermal-insulation mechanism of SiO<sub>2</sub> nanofibres was further studied. Results of the study show that the heat-treatment process has a significant effect on nanofibre diameter, which affects thermal conductivity. When the heat-treatment temperature is 900°C, the heating rate is 8°C min<sup>−1</sup> and holding time is 2 h, the diameter of SiO<sub>2</sub> nanofibres is the finest, and thermal conductivity is the lowest (0.039 W mK<sup>−1</sup>). In addition, nanofibres is demonstrated as functional fillers of thermal-insulation coating, which exhibit excellent thermal insulation and mechanical properties. This study can provide a certain reference value for the development of new lightweight and functional thermal-insulation fillers.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Husnu Koc, Sevket Sİmsek, Amirullah M Mamedov, Ekmel Ozbay
{"title":"The structural, mechanical, electronic, and optical properties of multiferroic LiCu2O2 under different pressures","authors":"Husnu Koc, Sevket Sİmsek, Amirullah M Mamedov, Ekmel Ozbay","doi":"10.1007/s12034-024-03365-3","DOIUrl":"10.1007/s12034-024-03365-3","url":null,"abstract":"<div><p>In this work, the structural, mechanical, and electronic properties of LiCu<sub>2</sub>O<sub>2</sub> compound under different pressures were studied using the density functional theory. The spin-polarized generalized-gradient approximation has been used for modelling the exchange-correlation effects. In particular, the electronic structure under zero pressure was analysed using both conventional GGA-PBE and meta-GGA (mBJLDA) functional. The structural optimization was performed by using VASP-code, and the lattice parameters and magnetic moments were calculated. Bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, anisotropy factors, sound velocities, and Debye temperature were obtained from the calculated elastic constants for LiCu<sub>2</sub>O<sub>2</sub> compound. While the electronic band structures obtained from both functionals for spin up under zero pressure are semiconductor in nature, the electronic band structures obtained from PBE and mBJLDA functionals for spin down are narrow semiconductor and semiconductor, respectively. For the spin-up state, the E<sub>g</sub> value decreases linearly after 5 GPa, while the E<sub>g</sub> value increases linearly for the spin-down state. The real and imaginary parts of the dielectric function along the x, y, and z axes and the optical constants, such as the energy loss function, refractive index, reflectivity coefficient, and extinction coefficient are also calculated and presented.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"First-principles study on structural and electronic properties of Er-doped dysprosium orthovanadate oxide","authors":"Rachana Sain, Chandan Upadhyay","doi":"10.1007/s12034-024-03363-5","DOIUrl":"10.1007/s12034-024-03363-5","url":null,"abstract":"<div><p>Comprehensive structural and electronic properties of zircon-type ternary-metal oxide, dysprosium orthovanadate, doped with varying concentrations of Er have been investigated using first-principles density functional theory (DFT). Furthermore, the significance of substitutional site doping has been elucidated, revealing that Er incorporation can profoundly alter the structural and electronic characteristics of DyVO<sub>4</sub>. Replacing Er atoms with Dy atoms through substitutional doping reduces the band gap to 2.79 eV compared to the pure zircon-type dysprosium vanadate oxide’s band gap value of 2.87 eV. Cohesive energy of Er-doped DyVO<sub>4</sub> oxide has also been computed at the <i>ab initio</i> level of calculation. Partial density of states’ (PDOS) calculations of all configurations, suggest that the doping element Er exhibits favourable chemical interactions with the host metal oxide, DyVO<sub>4</sub>. Electronic bands near the zero-energy or Fermi level strongly originate from the molecular orbitals of O, V and Dy atoms. Still, we have found that cation substitution at Dy ions’ site largely influences these electronic states and decreases band gap energy value. Consequently, by adjusting concentration of the dopant, the band gap of DyVO<sub>4</sub> oxide can be finely tuned to achieve specific desired levels, which is suitable for electronic applications.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural investigation and red emission intensity enhancement in Sm3+/Eu3+-doped/co-doped KSrPO4 phosphors: effect of charge compensation","authors":"A V Bharati, Sudha Ramnath","doi":"10.1007/s12034-024-03350-w","DOIUrl":"10.1007/s12034-024-03350-w","url":null,"abstract":"<div><p>At the realm of luminescence in the present period, phosphates are the fresh and developing candidates. In the suggested study work, citric acid is used as a fuel to create Sm<sup>3+</sup>- and Eu<sup>3+</sup>-activated/co-activated KSrPO<sub>4</sub> phosphor by a simple combustion process. Through the use of XRD and Rietveld refinement, the phase identity and crystal structure of produced phosphor are examined. SEM is used to examine the morphological study, elemental analysis and elemental analysis of the sample together with the planned phosphor. The suggested phosphors’ vibrational properties were confirmed through the use of FTIR. The suggested phosphor’s charge compensation effect and photochromic qualities demonstrate three instantaneous emission peaks in the visible range, which results in the emission of white light. The produced phosphor is a viable option for white light-emitting diodes and display applications, as confirmed by all these findings.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High performance ultraviolet photodetector based on lead-free bismuth perovskite heterojunction","authors":"Peng Wang, Zhenfu Pei, Qilin Dai, Hongshang Peng, Libo Fan, Zhi Zheng","doi":"10.1007/s12034-024-03338-6","DOIUrl":"10.1007/s12034-024-03338-6","url":null,"abstract":"<div><p>Metal-based halide perovskite materials are very promising for high-performance optoelectronic devices due to their extraordinary photoelectric properties. Bismuth-based perovskites are believed to replace the toxic Pb-based perovskites in optoelectronics due to their remarkable stability, and nontoxic properties. Here, we report self-powered Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub>/SnO<sub>2</sub> heterojunction ultraviolet (UV) photodetectors with excellent photoelectric detectivity. The optimized device exhibits an excellent ON/OFF ratio of 5.5 <span>(times)</span> 10<sup>3</sup>, a large responsivity of 25 mA/W, and a detectivity of 6.9 <span>(times)</span> 10<sup>11</sup> Jones at 0 V bias, which is much better than other bismuth halide perovskites with the same structure. In addition, our photodetector performance of the optimized device exhibits almost no change even after 30 days of exposure under an ambient environment, indicating excellent stability. Sulphur is introduced to Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> via bismuth ethyl-xanthogenate (Bi(Xt)<sub>3</sub>) to further improve the device performance. Detectivity of 9.2 × 10<sup>11</sup> Jones and responsivity of 37 mAW<sup>–1</sup> are achieved, which shows the best performance for bismuth-perovskite photodetector in this work. This work provides a method for fabricating high-performance and stable bismuth-based perovskite photodetectors with perovskite/inorganic heterojunctions.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Materials sustainability of thermoelectric generators for waste heat utilization","authors":"Anilkumar Bohra, Satish Vitta","doi":"10.1007/s12034-024-03373-3","DOIUrl":"10.1007/s12034-024-03373-3","url":null,"abstract":"<div><p>Amount of waste heat exergy generated globally (~69.058 EJ) can be divided into low temperature <373 K, 30.496 EJ; medium temperature 373–573 K, 14.431 EJ; and high temperature >573 K, 24.131 EJ. The minimum number of thermoelectric pn-junctions required to convert this high-temperature exergy into electrical power using currently known best materials is found to increase from 8.22 × 10<sup>11</sup> to 24.66 × 10<sup>11</sup> when the aspect ratio of the legs increases from 0.5 to 1.5 cm<sup>−1</sup>. To convert the low-temperature exergy, 81.76 × 10<sup>11</sup> to 245.25 × 10<sup>11</sup> junctions will be required. The amount of alloys required to synthesize these is of the order of ‘millions of tons’, which means the elements Bi, Te, Pb, Sb, Sn and Se required are also of similar magnitude. The current production of these elements, however, falls far short of this requirement by several orders of magnitude, indicating significant materials supply chain risk. The production of these elements and devices, even if resources are available, will emit millions of tons of CO<sub>2</sub> showing that current alloys are non-sustainable. It therefore becomes clear that alternate materials with low embodied energy, emissions and toxicity footprint, as well as minimal supply chain risk, need to be pursued.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Real surface area determination of dendritic porous copper films electrodeposited by pulsating overpotential regime using cyclic voltammetry method","authors":"Fatemeh Karimi Tabar Shafiei, Kourosh Jafarzadeh, Alireza Madram","doi":"10.1007/s12034-024-03352-8","DOIUrl":"10.1007/s12034-024-03352-8","url":null,"abstract":"<div><p>To increase the active surface area of copper collectors in Li-ion batteries, electrochemical deposition of porous copper films was carried out using a solution of 0.15 M CuSO<sub>4</sub>·5H<sub>2</sub>O in 0.5 M H<sub>2</sub>SO<sub>4</sub>. Square-wave pulsating overpotential deposition was performed at overpotential amplitudes of −1100, −1250 and −1400 mV <i>vs</i>. Ag/AgCl on copper foil, rated for Li batteries. Energy-dispersive method analysis and a scanning electron microscope were used to characterize film morphology. X-ray diffraction method was used to analyse structural properties of the deposits. Electroactive and real surfaces of the samples were measured using cyclic voltammetry (CV) in a 0.1 M KOH solution. The results showed that by increasing the applied negative overpotential, the electroactive and real surface area of the samples were increased. As a result, the sample values of 47.13, 58.50 and 62.63 cm<sup>2</sup> were obtained at the respective deposition overpotential amplitudes of −1100, −1250 and −1400 mV. For untreated film, however, the value was around 9.35 cm<sup>2</sup>. Ultimately, it was discovered that CV is a highly effective technique for determining the real surface area of porous copper foils.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}