M. J. Jiménez, J. Juan, M.S. Sandoval, P. Bechthold, P. V. Jasen, E. A. González, A. Juan
{"title":"Cover Feature: Li Decorated Graphdiyne Nanosheets: A Theoretical Study for an Electrode Material for Nonaqueous Lithium Batteries (Batteries & Supercaps 12/2024)","authors":"M. J. Jiménez, J. Juan, M.S. Sandoval, P. Bechthold, P. V. Jasen, E. A. González, A. Juan","doi":"10.1002/batt.202481203","DOIUrl":"https://doi.org/10.1002/batt.202481203","url":null,"abstract":"<p><b>The Cover Feature</b> illustrates the optimized structures for lithium adsorbed on pristine and defective graphdiyne (GDY) nanosheets. The upper part (left) of the picture shows a perfect layer decorated with lithium (green), to the right is a plot of the charge density difference, showing a uniform distribution and a charge transfer from the lithium at one vertex. The lower part presents the structure after introducing a carbon vacancy showing a distortion, charge transfer from Li atoms and an asymmetric charge density difference that moves to the three connecting carbon atoms (blue). More information can be found in the Research Article by A. Juan and co-workers (DOI: 10.1002/batt.202400514).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202481203","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Picture: Automated Robotic Cell Fabrication Technology for Stacked-Type Lithium-Oxygen Batteries (Batteries & Supercaps 12/2024)","authors":"Shoichi Matsuda, Shin Kimura, Misato Takahashi","doi":"10.1002/batt.202481201","DOIUrl":"https://doi.org/10.1002/batt.202481201","url":null,"abstract":"<p><b>The Front Cover</b> shows a fully automated sequential robotic experimental setup for the cell fabrication of stacked-type lithium–oxygen rechargeable batteries with a fabrication throughput of over 80 cells per day, which is ten times higher than conventional human-based experiments. The high alignment accuracy during the electrode stacking and electrolyte injection process results in improved battery performance and reproducibility. More information can be found in the Research Article by S. Matsuda and co-workers (DOI: 10.1002/batt.202400509).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202481201","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Feature: Flexible Micro-Supercapacitors with Enhanced Energy Density Utilizing Flash Lamp Annealed Graphene-Carbon Nanotube Composite Electrodes (Batteries & Supercaps 12/2024)","authors":"Yusik Myung, TaeYoung Kim","doi":"10.1002/batt.202481202","DOIUrl":"https://doi.org/10.1002/batt.202481202","url":null,"abstract":"<p><b>The Cover Feature</b> illustrates the advanced fabrication process and structure of flexible micro-supercapacitors (MSCs) with 3D interconnected graphene/carbon nanotube (CNT) composite electrodes. Combining flash lamp annealing (FLA) and laser ablation, this process transforms graphene oxide and CNT films into high-performance, interdigitated MSCs. The resulting devices deliver exceptional energy density, flexibility, and scalability, thus underscoring their potential for flexible electronics and miniaturized energy-storage applications. More information can be found in the Research Article by Y. Myung and T. Y. Kim (DOI: 10.1002/batt.202400557).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202481202","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Picture: Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution (Batteries & Supercaps 11/2024)","authors":"Álvaro Seijas-Da Silva, Víctor Oestreicher, Cristián Huck-Iriart, Martín Mizrahi, Diego Hunt, Valeria Ferrari, Gonzalo Abellán","doi":"10.1002/batt.202481101","DOIUrl":"https://doi.org/10.1002/batt.202481101","url":null,"abstract":"<p><b>The Front Cover</b> illustrates the advantages in the supercapacitive behaviour of cobalt-layered hydroxides achieved through 3D structuring and halide substitution. The 3D flower-like morphology of α-Co hydroxyhalides significantly enhances their electrochemical performance compared to the hexagonal structure. By substituting chloride with iodide, the capacitive behaviour is further improved by over 40 %, thereby showcasing the critical role of halides in modulating electronic properties. This achievement makes these materials promising candidates for energy storage. More information can be found in the Research Article by V. Oestreicher, G. Abellán and co-workers (DOI: 10.1002/batt.202400335).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 11","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202481101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Feature: Electrospun Quasi-Composite Polymer Electrolyte with Hydoxyl-Anchored Aluminosilicate Zeolitic Network for Dendrite Free Lithium Metal Batteries (Batteries & Supercaps 11/2024)","authors":"Jenny Johnson, Sajan Raj Sasirajan Littleflower, Kumaran Vediappan, Helen Annal Therese","doi":"10.1002/batt.202481103","DOIUrl":"https://doi.org/10.1002/batt.202481103","url":null,"abstract":"<p><b>The Cover Feature</b> illustrates the stable performance of a PVA-based quasi-solid polymer electrolyte. The fast lithium ion movement through the inter- and intra-crystalline pores of the zeolitic pathway enables stable lithium ion flux at the solid electrolyte interface, thus allowing the system to operate even at a high current density of 100 mA cm<sup>−2</sup> without dendrite formation. More information can be found in the Research Article by H. Annal Therese and co-workers (DOI: 10.1002/batt.202400299).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 11","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202481103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fangqing Liu, Xiaoyi Lu, Chenglong Shi, Zhipeng Sun
{"title":"Cover Feature: Metal-Organic Framework Materials as Bifunctional Electrocatalyst for Rechargeable Zn-Air Batteries (Batteries & Supercaps 11/2024)","authors":"Fangqing Liu, Xiaoyi Lu, Chenglong Shi, Zhipeng Sun","doi":"10.1002/batt.202481102","DOIUrl":"https://doi.org/10.1002/batt.202481102","url":null,"abstract":"<p><b>The Cover Feature</b> shows catalytic oxygen reduction (ORR) and oxygen evolution (OER) taking place in a liquid zinc–air battery system with the transfer of electrons and conversion between O<sub>2</sub> and OH<sup>−</sup>. The morphologies of the basic types of MOF catalysts for rechargeable zinc–air batteries are illustrated. Their porous structure and tunable chemical composition seem to be the main advantages for their use as electrocatalysts. Carbon-based materials derived from the MOF act as sacrificial templates with high activity, electrical conductivity and stability. In their Review (DOI: 10.1002/batt.202400402), Z. Sun and co-workers present three kinds of metal–organic skeleton bifunctional catalysts (pristine MOFs, MOF derivatives and composite derivatives) and show how they offer new possibilities for replacing noble metal catalysts.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 11","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202481102","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phase Regulation Promotes High Rate-Long Term Na4Fe3(PO4)2P2O7 Cathode for Sodium-Ion Batteries","authors":"Haiyan Yang, Xinhai Li, Zhixing Wang, Huajun Guo, Hui Duan, Jiexi Wang, Guangchao Li, Guochun Yan","doi":"10.1002/batt.202400438","DOIUrl":"https://doi.org/10.1002/batt.202400438","url":null,"abstract":"<p>Sodium-ion batteries (SIBs) have evoked much attention, benefiting from the advantages of low cost, high safety and excellent performance at low temperature. Especially, Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (NFPP) cathode is considered to be one of the best candidates for SIBs cathode with abundant resources and long-term cycling stability. However, the impurities of NaFePO<sub>4</sub> (NFP) and Na<sub>2</sub>FeP<sub>2</sub>O<sub>7</sub> (NFPO) formed synchronously with NFPP which restrict the further application of NFPP. It is meaningful to clear the formation process and regulate the contents of NFP and NFPO. Therefore, NFPP cathodes with different contents of NFP and NFPO were prepared through high energy ball milling cooperated with post-heat treatment by controlling the Fe concentration in reactants. The NFPP-2.85 showed the best electrochemical performance because of the high content of NFPP and transition zone between NFPP and NFPO which fasts the Na<sup>+</sup> transport kinetics. When employed as cathode for SIBs, the as-prepared NFPP-2.85 showed a specific capacity of 111.8 mAh g<sup>−1</sup> at 0.1 C and maintained at 68.9 mAh g<sup>−1</sup> even at 100 C. The retention ratio was as high as 93.6 % after 1500 cycles at 20 C, implying superior high rate-long term cycling stability. This work provides a new way for impurities regulation and the improvement of NFPP electrochemical performance.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flexible Micro-Supercapacitors with Enhanced Energy Density Utilizing Flash Lamp Annealed Graphene-Carbon Nanotube Composite Electrodes","authors":"Yusik Myung, TaeYoung Kim","doi":"10.1002/batt.202400557","DOIUrl":"https://doi.org/10.1002/batt.202400557","url":null,"abstract":"<p>As demand for micro-power sources grows, micro-supercapacitors (MSCs) have become critical for miniaturized devices, offering robust electrochemical energy storage. However, the challenge remains to develop a simple, scalable fabrication method that achieves both high energy and power densities. In this study, we present a refined approach to fabricating MSCs with 3D interconnected graphene/carbon nanotube (CNT) composite electrodes. Our method combines flash lamp annealing (FLA) and laser ablation, where FLA converts graphene oxide (GO) and CNT composite films into 3D-structured graphene/CNT electrodes, and laser ablation precisely patterns them into interdigitated designs. This dual-process technique produces MSCs with exceptional electrochemical performance, including an impressive areal capacitance of 26.11 mF/cm<sup>2</sup> and a volumetric capacitance of 31.88 F/cm<sup>3</sup>. These devices also achieve energy densities of 3.72 μWh/cm<sup>2</sup> and 4.43 mWh/cm<sup>3</sup>, maintaining 97 % of their initial capacitance under extreme bending, demonstrating outstanding mechanical flexibility and durability. Furthermore, the scalability of this method was validated by configuring MSCs in series and parallel, achieving enhanced voltage and current outputs without additional interconnections. Overall, the integration of FLA and laser ablation holds significant promise for advancing the performance and scalability of micro-sized energy storage devices, addressing the growing need for efficient, flexible, and high-capacity micro-power sources.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. J. Jiménez, J. Juan, M.S. Sandoval, P. Bechthold, P. V. Jasen, E. A. González, A. Juan
{"title":"Li Decorated Graphdiyne Nanosheets: A Theoretical Study for an Electrode Material for Nonaqueous Lithium Batteries","authors":"M. J. Jiménez, J. Juan, M.S. Sandoval, P. Bechthold, P. V. Jasen, E. A. González, A. Juan","doi":"10.1002/batt.202400514","DOIUrl":"https://doi.org/10.1002/batt.202400514","url":null,"abstract":"<p>In this work, Density Functional Theory (DFT) is used to study pristine and defective GDY. We investigate the effect of Li atom adsorption on the electronic and structural properties of this 2D material. In both cases, the Li atom is located at the corner of the triangular-like pore (H1), but with a slight shift for the defective system. In the perfect system, the Li−C bond distances range from 2.289 Å to 2.461 Å, while in the defective case, they range from 2.237 Å to 3.184 Å. In the perfect case, the GDY−Li system becomes metallic and the Li 2 s states are stabilized. Charge transfer to the surfaces occurs near the vicinity of the Li atom. The C vacancy generates new C=C bonds similar to double bonds, enhancing the interaction with Li through strong conjugation. After Li adsorption, the sum of bond order for all the C atoms increases in both structures, from 0.4 % to 6 %. The Li storage capacity without significant restructuring is six Li atoms. When the atom concentration increases, the OCV values for Li decrease from 0.93 V to 0.23 V. For defective GDY, the specific capacity is 788 mAhg<sub>−1</sub>, which is slightly higher than for pristine case.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mecaelah S. Palaganas, Jayson S. Garcia, Giancarlo Dominador D. Sanglay, Lora Monique E. Sapanta, Dr. Lawrence A. Limjuco, Prof. Joey D. Ocon
{"title":"Cover Feature: Can Prussian Blue Analogues be Holy Grail for Advancing Post-Lithium Batteries? (Batteries & Supercaps 10/2024)","authors":"Mecaelah S. Palaganas, Jayson S. Garcia, Giancarlo Dominador D. Sanglay, Lora Monique E. Sapanta, Dr. Lawrence A. Limjuco, Prof. Joey D. Ocon","doi":"10.1002/batt.202481002","DOIUrl":"https://doi.org/10.1002/batt.202481002","url":null,"abstract":"<p><b>The Cover Feature</b> showcases the diverse applications of Prussian Blue analogue (PBA)–based post-lithium batteries (PLBs). The circles on the left of the battery depict their current use in supporting the transition to clean energy. The circles on the right highlight potential future industries that PBA-based PLBs could transform, including aerospace, electronics, and mobility applications. The development of PBA cathodes is poised to be a significant breakthrough in enhancing PLBs, unlocking a wide array of applications. More information can be found in the Review by J. D. Ocon and co-workers (DOI: 10.1002/batt.202400280).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 10","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202481002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}