Sebastian Ohneseit, Marc C. Holocher, Alexis Kalk, Nils Uhlmann, Hans J. Seifert, Carlos Ziebert
{"title":"Cover Feature: Aging Behavior Beyond SOH 80: An Experimental Aging Study on Commercial Lithium–Ion Batteries with Different Cathode Materials: Capacity Loss, Resistance Change and Impedance Modeling (Batteries & Supercaps 5/2025)","authors":"Sebastian Ohneseit, Marc C. Holocher, Alexis Kalk, Nils Uhlmann, Hans J. Seifert, Carlos Ziebert","doi":"10.1002/batt.202580502","DOIUrl":"https://doi.org/10.1002/batt.202580502","url":null,"abstract":"<p><b>The Cover Feature</b> shows, on the left, four batteries for the cathode materials studied. In the center, calendar aging (top) is shown with a stored and aged cell and cyclic aging (bottom) with an aged cell and a sinusoidal current curve. On the right are the analysis methods: a capacitor for capacity analysis, a resistor for ohmic resistance and an impedance symbol for electrochemical impedance analysis. More information can be found in the Research Article by S. Ohneseit, C. Ziebert and co-workers (DOI: 10.1002/batt.202400713).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 5","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580502","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raphael Schoof, Lukas Köbbing, Prof. Dr. Arnulf Latz, Prof. Dr. Birger Horstmann, Prof. Dr. Willy Dörfler
{"title":"Cover Picture: Elliptical Silicon Nanowire Covered by the SEI in a 2D Chemo-Mechanical Simulation (Batteries & Supercaps 5/2025)","authors":"Raphael Schoof, Lukas Köbbing, Prof. Dr. Arnulf Latz, Prof. Dr. Birger Horstmann, Prof. Dr. Willy Dörfler","doi":"10.1002/batt.202580501","DOIUrl":"https://doi.org/10.1002/batt.202580501","url":null,"abstract":"<p><b>The Front Cover</b> illustrates silicon nanowires as a promising next-generation anode for lithium-ion batteries. The inset highlights the elliptical shape of the nanowires covered by a solid-electrolyte interphase shell and the lithium concentration distribution inside the nanowire. Notably, the mechanical impact of the shell causes lithium concentration anomalies inside the nanowires. More information can be found in the Research Article by R. Schoof, L. Köbbing and co-workers (DOI: 10.1002/batt.202400604).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 5","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580501","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luca Minnetti, Faduma M. Maddar, Anupriya K. Haridas, Matthew Capener, Francesco Nobili, Ivana Hasa
{"title":"Cover Feature: Assessing Manufacturing-Performance Correlation On LiMn0.7Fe0.3PO4 Electrodes For Application In Upscaled Li-Ion Battery Cells (Batteries & Supercaps 4/2025)","authors":"Luca Minnetti, Faduma M. Maddar, Anupriya K. Haridas, Matthew Capener, Francesco Nobili, Ivana Hasa","doi":"10.1002/batt.202580402","DOIUrl":"https://doi.org/10.1002/batt.202580402","url":null,"abstract":"<p><b>Process parameters</b>, often overlooked in lab-scale studies, play a crucial role in shaping manufacturing–performance correlations when scaling up battery cell components. The Research Article by I. Hasa and co-workers (DOI: 10.1002/batt.202400645) examines the influence of conductive additives and electrode manufacturing parameters, bridging the gap between academic research and industrial applications for a more accurate assessment of electrode performance under realistic conditions.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 4","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580402","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143826741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seungyeop Choi, Jun Pyo Seo, Jaejin Lim, Cyril Bubu Dzakpasu, Youngjoon Roh, Cheol Bak, Suhwan Kim, Prof. Hongkyung Lee, Prof. Yong Min Lee
{"title":"Cover Picture: Optimizing the Power Performance of Lithium-Ion Batteries: The Role of Separator Porosity and Electrode Mass Loading (Batteries & Supercaps 4/2025)","authors":"Seungyeop Choi, Jun Pyo Seo, Jaejin Lim, Cyril Bubu Dzakpasu, Youngjoon Roh, Cheol Bak, Suhwan Kim, Prof. Hongkyung Lee, Prof. Yong Min Lee","doi":"10.1002/batt.202580401","DOIUrl":"https://doi.org/10.1002/batt.202580401","url":null,"abstract":"<p><b>The Front Cover</b> illustrates the impact of polyethylene separator porosity on the electrochemical performance of lithium-ion batteries. The findings demonstrate that intrinsic separator properties, such as resistance and porosity, play a critical role in determining power performance, particularly in cells with thick electrodes. This study highlights the necessity of optimizing separator characteristics to align with specific electrode designs. More information can be found in the Research Article by H. Lee, Y. M. Lee and co-workers (DOI: 10.1002/batt.202400638).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 4","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580401","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143827076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sebastian Ohneseit, Marc C. Holocher, Alexis Kalk, Nils Uhlmann, Hans J. Seifert, Carlos Ziebert
{"title":"Aging Behavior Beyond SOH 80: An Experimental Aging Study on Commercial Lithium–Ion Batteries with Different Cathode Materials: Capacity Loss, Resistance Change and Impedance Modeling","authors":"Sebastian Ohneseit, Marc C. Holocher, Alexis Kalk, Nils Uhlmann, Hans J. Seifert, Carlos Ziebert","doi":"10.1002/batt.202400713","DOIUrl":"https://doi.org/10.1002/batt.202400713","url":null,"abstract":"<p>New insights into lithium–ion battery aging behavior beyond a state of health of 80%, as well as for three different aging diagnostics and modeling methods, are obtained through this study conducted on four different cell types. Commercial cylindrical cells of type 21,700 are subjected to calendar aging and cyclic aging with different parameters in a long-term study. The impact of the aging parameters on the four different cathode materials assessed (lithium–nickel–manganese cobalt oxide (NMC), lithium–nickel–cobalt–aluminum oxide high energy (NCA-HE), lithium–nickel–cobalt–aluminum oxide high power, and lithium–iron phosphate oxide (LFP)) is examined with a portfolio of diagnostic methods: capacity test, Ohmic resistance test and the core of this study, impedance analysis, together with sophisticated equivalent circuit modeling (ECM). It was found that the NMC cell degraded fastest under all aging conditions, the most durable was in most cases the NCA-HE cell. Only for one cyclic aging procedure, the LFP cells performs the best. The diagnostics shows that quantitative analysis of Nyquist plots is not sufficient for aging tracking and that some aging effects can only be detected by pulse discharging test. Moreover, capacity and mean Ohmic resistance deduced from electrochemical impedance spectroscopy test allow extrapolation to forecast further aging under diverse aging conditions.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 5","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400713","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced Electrochemical Performance of Li-rich Cathode Materials by Al Doping","authors":"Busra Cetin, Tugce Gul Idinak, Neslihan Yuca","doi":"10.1002/batt.202400652","DOIUrl":"https://doi.org/10.1002/batt.202400652","url":null,"abstract":"<p>Li-rich oxides are the most promising of the high-voltage cathode materials with their high specific capacity. However, Li-rich cathode materials suffer from structural instability, voltage degradation, and capacity fading upon cycling. Al-doping can improve electrochemical performance by stabilizing the structure and suppressing the phase transitions for Li-rich cathodes. In this paper, we investigate the effect of different amounts of Al with the general formula Li<sub>1.2</sub>Mn<sub>0.54-x</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Al<sub>x</sub>O<sub>2</sub> and Li<sub>1.2-x</sub>Mn<sub>0.54</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Al<sub>x</sub>O<sub>2</sub> (x=0.02, 0.05, 0.1) cathode materials. The Li and Mn elements were replaced by Al, and the electrochemical performance was compared to pristine Li<sub>1.2</sub>Mn<sub>0.54</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>O<sub>2</sub>. The Li and Mn elements were replaced by Al, and the electrochemical performance was compared. The impact of substitution of Mn and Li by Al on the structural and morphological properties has been investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The charge and discharge tests show that doping with Al substitution leads to improved electrochemical performance, enhancing both the cycling stability and rate capability of the Li-rich cathode materials. Along with the improved specific capacities, these materials demonstrate superior rate performance, particularly for the composition with the lowest Al content.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 5","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400652","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nomnotho Jiyane, Carla Santana Santos, Igor Echevarria Poza, Mario Palacios Corella, Muhammad Adib Abdillah Mahbub, Gimena Marin-Tajadura, Thomas Quast, Maria Ibáñez, Edgar Ventosa, Wolfgang Schuhmann
{"title":"Cover Feature: Recessed Microelectrodes as a Platform to Investigate the Intrinsic Redox Process of Prussian Blue Analogs for Energy Storage Application (Batteries & Supercaps 3/2025)","authors":"Nomnotho Jiyane, Carla Santana Santos, Igor Echevarria Poza, Mario Palacios Corella, Muhammad Adib Abdillah Mahbub, Gimena Marin-Tajadura, Thomas Quast, Maria Ibáñez, Edgar Ventosa, Wolfgang Schuhmann","doi":"10.1002/batt.202580302","DOIUrl":"https://doi.org/10.1002/batt.202580302","url":null,"abstract":"<p><b>The Cover Feature</b> shows how recessed microelectrodes were employed as a versatile binder-free platform to investigate the electrochemical performance of Prussian Blue analogues (PBA), a class of promising battery materials, concerning capacity in varying aqueous electrolytes. To corroborate the micro-electrochemical findings, both ex-situ and operando chemical characterizations were conducted, offering complementary insights into the structural and chemical evolution of the PBA material during electrochemical cycling. More information can be found in the Research Article by W. Schuhmann and co-workers (DOI: 10.1002/batt.202400743).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580302","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143633071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Talia Echeverria, Francesco Bernasconi, Paweł P. Ziemiański, David Reber
{"title":"Cover Picture: Impact of Thermal Electrode Activation on Electrocatalyst Performance in KCrPDTA/K4Fe(CN)6 Flow Batteries (Batteries & Supercaps 3/2025)","authors":"Talia Echeverria, Francesco Bernasconi, Paweł P. Ziemiański, David Reber","doi":"10.1002/batt.202580301","DOIUrl":"https://doi.org/10.1002/batt.202580301","url":null,"abstract":"<p><b>The Front Cover</b> highlights a study that explored how carbon electrode modifications and bismuth deposition affect performance in KCrPDTA/K<sub>4</sub>Fe(CN)<sub>6</sub> flow batteries. Larger bismuth deposits that form on thermally activated electrodes reduce the Coulombic efficiency due to enhanced hydrogen evolution, whereas smaller deposits improve the overall efficiency. These findings highlight the importance of controlling catalyst morphology to balance power output and cell longevity. More information can be found in the Research Article by D. Reber and co-workers (DOI: 10.1002/batt.202400696).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580301","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143633070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eunbin Park, Jiwon Jeong, Yung-Eun Sung, Seung-Ho Yu
{"title":"Cover Picture: Green Electrolytes for Aqueous Ion Batteries: Towards High-Energy and Low-Temperature Applications (Batteries & Supercaps 2/2025)","authors":"Eunbin Park, Jiwon Jeong, Yung-Eun Sung, Seung-Ho Yu","doi":"10.1002/batt.202580201","DOIUrl":"https://doi.org/10.1002/batt.202580201","url":null,"abstract":"<p><b>The Front Cover</b> illustrates the five key electrolytes discussed in this Review of green aqueous ion batteries by Y.-E. Sung, S.-H. Yu and co-workers (DOI: 10.1002/batt.202400579). At the center of the illustration is a cylindrical aqueous battery, symbolizing the paper's two major themes: high-energy and low-temperature operation. It is placed in the middle of a green forest, surrounded by hydrogel, eutectic, additive/cosolvent, water-in-salt, and molecular crowding electrolytes.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 2","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580201","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammed Alabdali, Franco M. Zanotto, Benoît Notredame, Virginie Viallet, Vincent Seznec, Alejandro A. Franco
{"title":"Cover Feature: Experimental and Computational Analysis of Slurry-Based Manufacturing of Solid-State Battery Composite Cathode (Batteries & Supercaps 2/2025)","authors":"Mohammed Alabdali, Franco M. Zanotto, Benoît Notredame, Virginie Viallet, Vincent Seznec, Alejandro A. Franco","doi":"10.1002/batt.202580202","DOIUrl":"https://doi.org/10.1002/batt.202580202","url":null,"abstract":"<p><b>The Cover Feature</b> showcases the manufacturing journey of solid-state battery composite electrodes, capturing the transition of the microstructure across key stages: slurry, drying, and calendering. It features a modeling workflow for battery cathodes composed of LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> and Li<sub>6</sub>PS<sub>5</sub>Cl, unveiling the impact of processing on microstructural evolution, with results validated against experimental data. More information can be found in the Research Article by A. A. Franco and co-workers (DOI: 10.1002/batt.202400709).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 2","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580202","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}