{"title":"Cover Picture: ZnO-gCN Coated Separator for Modulating the Solid-Electrolyte Interphase on Lithium Metal Anodes (Batteries & Supercaps 7/2025)","authors":"Rashmi Yadav, Ankush Kumar Singh, Rosy","doi":"10.1002/batt.70024","DOIUrl":null,"url":null,"abstract":"<p><b>The Front Cover</b> illustrates the impact of polypropylene separator modification on the ion flux, dendritic growth, and solid–electrolyte interphase composition. The findings show that by engineering the separator, its intrinsic properties, such as ionic conductivity, electrolyte uptake, and diffusion kinetics, can be modulated to improve the interfacial stability of the metal anode/electrolyte interphase. All of this promotes nucleation, reduces dendritic growth, and contributes to improved electrochemical performance. More information can be found in the Research Article by Rosy and co-workers (DOI: 10.1002/batt.202500128).\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 7","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.70024","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.70024","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The Front Cover illustrates the impact of polypropylene separator modification on the ion flux, dendritic growth, and solid–electrolyte interphase composition. The findings show that by engineering the separator, its intrinsic properties, such as ionic conductivity, electrolyte uptake, and diffusion kinetics, can be modulated to improve the interfacial stability of the metal anode/electrolyte interphase. All of this promotes nucleation, reduces dendritic growth, and contributes to improved electrochemical performance. More information can be found in the Research Article by Rosy and co-workers (DOI: 10.1002/batt.202500128).
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.