{"title":"封面特色:锂离子电池有机正极活性材料性能预测模型的准确性和通用性提高(电池& Supercaps 9/2025)","authors":"Rika Yamamoto, Yasuhiko Igarashi, Hiroaki Imai, Taisei Sakata, Shuntaro Miyakawa, Shino Yoshizaki, Takaya Saito, Yuya Oaki","doi":"10.1002/batt.70093","DOIUrl":null,"url":null,"abstract":"<p><b>Organic cathode-active materials</b> with higher redox potential and specific capacity are significant in achieving higher energy density. However, the exploration of new active materials, including their design and synthesis, based on professional experience comes up against limitations. The work detailed in the Research Article by Y. Oaki and co-workers (DOI: 10.1002/batt.202500288) presents new performance prediction models for these materials, such as for their potential and capacity. The predictors enable the accelerated discovery of new high-performance organic cathode-active materials, such as those used in electric vehicles, drones, and high-altitude platform stations.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 9","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/batt.70093","citationCount":"0","resultStr":"{\"title\":\"Cover Feature: Performance Prediction Models with Improved Accuracy and Generalizability for Organic Cathode-Active Materials of Lithium-Ion Battery (Batteries & Supercaps 9/2025)\",\"authors\":\"Rika Yamamoto, Yasuhiko Igarashi, Hiroaki Imai, Taisei Sakata, Shuntaro Miyakawa, Shino Yoshizaki, Takaya Saito, Yuya Oaki\",\"doi\":\"10.1002/batt.70093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Organic cathode-active materials</b> with higher redox potential and specific capacity are significant in achieving higher energy density. However, the exploration of new active materials, including their design and synthesis, based on professional experience comes up against limitations. The work detailed in the Research Article by Y. Oaki and co-workers (DOI: 10.1002/batt.202500288) presents new performance prediction models for these materials, such as for their potential and capacity. The predictors enable the accelerated discovery of new high-performance organic cathode-active materials, such as those used in electric vehicles, drones, and high-altitude platform stations.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"8 9\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/batt.70093\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/batt.70093\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/batt.70093","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Cover Feature: Performance Prediction Models with Improved Accuracy and Generalizability for Organic Cathode-Active Materials of Lithium-Ion Battery (Batteries & Supercaps 9/2025)
Organic cathode-active materials with higher redox potential and specific capacity are significant in achieving higher energy density. However, the exploration of new active materials, including their design and synthesis, based on professional experience comes up against limitations. The work detailed in the Research Article by Y. Oaki and co-workers (DOI: 10.1002/batt.202500288) presents new performance prediction models for these materials, such as for their potential and capacity. The predictors enable the accelerated discovery of new high-performance organic cathode-active materials, such as those used in electric vehicles, drones, and high-altitude platform stations.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.