Batteries & Supercaps最新文献

筛选
英文 中文
Cover Feature: Recessed Microelectrodes as a Platform to Investigate the Intrinsic Redox Process of Prussian Blue Analogs for Energy Storage Application (Batteries & Supercaps 3/2025) 封面特写:嵌入式微电极作为研究普鲁士蓝类似物内在氧化还原过程的平台,用于储能应用(电池& Supercaps 3/2025)
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2025-03-17 DOI: 10.1002/batt.202580302
Nomnotho Jiyane, Carla Santana Santos, Igor Echevarria Poza, Mario Palacios Corella, Muhammad Adib Abdillah Mahbub, Gimena Marin-Tajadura, Thomas Quast, Maria Ibáñez, Edgar Ventosa, Wolfgang Schuhmann
{"title":"Cover Feature: Recessed Microelectrodes as a Platform to Investigate the Intrinsic Redox Process of Prussian Blue Analogs for Energy Storage Application (Batteries & Supercaps 3/2025)","authors":"Nomnotho Jiyane,&nbsp;Carla Santana Santos,&nbsp;Igor Echevarria Poza,&nbsp;Mario Palacios Corella,&nbsp;Muhammad Adib Abdillah Mahbub,&nbsp;Gimena Marin-Tajadura,&nbsp;Thomas Quast,&nbsp;Maria Ibáñez,&nbsp;Edgar Ventosa,&nbsp;Wolfgang Schuhmann","doi":"10.1002/batt.202580302","DOIUrl":"https://doi.org/10.1002/batt.202580302","url":null,"abstract":"<p><b>The Cover Feature</b> shows how recessed microelectrodes were employed as a versatile binder-free platform to investigate the electrochemical performance of Prussian Blue analogues (PBA), a class of promising battery materials, concerning capacity in varying aqueous electrolytes. To corroborate the micro-electrochemical findings, both ex-situ and operando chemical characterizations were conducted, offering complementary insights into the structural and chemical evolution of the PBA material during electrochemical cycling. More information can be found in the Research Article by W. Schuhmann and co-workers (DOI: 10.1002/batt.202400743).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580302","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143633071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Impact of Thermal Electrode Activation on Electrocatalyst Performance in KCrPDTA/K4Fe(CN)6 Flow Batteries (Batteries & Supercaps 3/2025) 封面图:热电极活化对KCrPDTA/K4Fe(CN)6液流电池电催化剂性能的影响(battery & Supercaps 3/2025)
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2025-03-17 DOI: 10.1002/batt.202580301
Talia Echeverria, Francesco Bernasconi, Paweł P. Ziemiański, David Reber
{"title":"Cover Picture: Impact of Thermal Electrode Activation on Electrocatalyst Performance in KCrPDTA/K4Fe(CN)6 Flow Batteries (Batteries & Supercaps 3/2025)","authors":"Talia Echeverria,&nbsp;Francesco Bernasconi,&nbsp;Paweł P. Ziemiański,&nbsp;David Reber","doi":"10.1002/batt.202580301","DOIUrl":"https://doi.org/10.1002/batt.202580301","url":null,"abstract":"<p><b>The Front Cover</b> highlights a study that explored how carbon electrode modifications and bismuth deposition affect performance in KCrPDTA/K<sub>4</sub>Fe(CN)<sub>6</sub> flow batteries. Larger bismuth deposits that form on thermally activated electrodes reduce the Coulombic efficiency due to enhanced hydrogen evolution, whereas smaller deposits improve the overall efficiency. These findings highlight the importance of controlling catalyst morphology to balance power output and cell longevity. More information can be found in the Research Article by D. Reber and co-workers (DOI: 10.1002/batt.202400696).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580301","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143633070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Silicon as Structural Stabilizer and Redox-Active Element in Multicomponent (Sn, Sb, Fe, Si) Alloy Electrodes for Na-Ion Batteries 硅作为结构稳定剂和氧化还原活性元素在钠离子电池多组分(Sn, Sb, Fe, Si)合金电极中的作用
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2025-03-14 DOI: 10.1002/batt.202400690
Yuliia Kravets, Yanan Sun, Hui Wang, Philipp Adelhelm
{"title":"Role of Silicon as Structural Stabilizer and Redox-Active Element in Multicomponent (Sn, Sb, Fe, Si) Alloy Electrodes for Na-Ion Batteries","authors":"Yuliia Kravets,&nbsp;Yanan Sun,&nbsp;Hui Wang,&nbsp;Philipp Adelhelm","doi":"10.1002/batt.202400690","DOIUrl":"https://doi.org/10.1002/batt.202400690","url":null,"abstract":"<p>Metal alloys are attractive electrode materials for sodium-ion batteries (SIBs) thanks to their high theoretical capacities. Because of its good availability and promising use in Li-ion batteries, silicon is also interesting for SIBs. However, so far its use has not been very successful because formation of the NaSi phase (954 mAh g<sup>−1</sup>) is kinetically unfavorable. Here, the role of Si in multicomponent alloys composed of redox-active metals tin (Sn), antimony (Sb), and redox-inactive iron (Fe) is investigated. The composites are prepared by high-energy ball milling. The resulting particles and agglomerates are typically in the lower μm range (0.5–10 μm) and contain, depending on the composition, the different metals and the intermetallic phases SnSb, FeSn, FeSn<sub>2</sub>, FeSi and FeSi<sub>2</sub>. It is found that Si remains electrochemically inactive irrespective of its chemical state, but still provides some benefits. Similar to Fe, Si acts as a structural stabilizer for composite electrodes. Excellent rate capability is demonstrated by the Sn:Si:Fe alloy, while the highest capacity and long-term stability are found for the Sn:Sb:Si (2:2:1) alloy. The stabilizing effect of Si (and Fe) is observed through operando electrochemical dilatometry, which shows a much smaller degree of electrode breathing compared to the Si/Fe-free electrode.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 6","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400690","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144339304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Green Electrolytes for Aqueous Ion Batteries: Towards High-Energy and Low-Temperature Applications (Batteries & Supercaps 2/2025) 封面图片:用于水离子电池的绿色电解质:迈向高能量和低温应用(电池和超级电容器2/2025)
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2025-02-17 DOI: 10.1002/batt.202580201
Eunbin Park, Jiwon Jeong, Yung-Eun Sung, Seung-Ho Yu
{"title":"Cover Picture: Green Electrolytes for Aqueous Ion Batteries: Towards High-Energy and Low-Temperature Applications (Batteries & Supercaps 2/2025)","authors":"Eunbin Park,&nbsp;Jiwon Jeong,&nbsp;Yung-Eun Sung,&nbsp;Seung-Ho Yu","doi":"10.1002/batt.202580201","DOIUrl":"https://doi.org/10.1002/batt.202580201","url":null,"abstract":"<p><b>The Front Cover</b> illustrates the five key electrolytes discussed in this Review of green aqueous ion batteries by Y.-E. Sung, S.-H. Yu and co-workers (DOI: 10.1002/batt.202400579). At the center of the illustration is a cylindrical aqueous battery, symbolizing the paper's two major themes: high-energy and low-temperature operation. It is placed in the middle of a green forest, surrounded by hydrogel, eutectic, additive/cosolvent, water-in-salt, and molecular crowding electrolytes.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 2","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580201","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Feature: Experimental and Computational Analysis of Slurry-Based Manufacturing of Solid-State Battery Composite Cathode (Batteries & Supercaps 2/2025) 封面专题:基于浆料的固态电池复合正极制造的实验与计算分析(Battery & Supercaps 2/2025)
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2025-02-17 DOI: 10.1002/batt.202580202
Mohammed Alabdali, Franco M. Zanotto, Benoît Notredame, Virginie Viallet, Vincent Seznec, Alejandro A. Franco
{"title":"Cover Feature: Experimental and Computational Analysis of Slurry-Based Manufacturing of Solid-State Battery Composite Cathode (Batteries & Supercaps 2/2025)","authors":"Mohammed Alabdali,&nbsp;Franco M. Zanotto,&nbsp;Benoît Notredame,&nbsp;Virginie Viallet,&nbsp;Vincent Seznec,&nbsp;Alejandro A. Franco","doi":"10.1002/batt.202580202","DOIUrl":"https://doi.org/10.1002/batt.202580202","url":null,"abstract":"<p><b>The Cover Feature</b> showcases the manufacturing journey of solid-state battery composite electrodes, capturing the transition of the microstructure across key stages: slurry, drying, and calendering. It features a modeling workflow for battery cathodes composed of LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> and Li<sub>6</sub>PS<sub>5</sub>Cl, unveiling the impact of processing on microstructural evolution, with results validated against experimental data. More information can be found in the Research Article by A. A. Franco and co-workers (DOI: 10.1002/batt.202400709).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 2","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580202","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Scalable Production of Sodium-Ion Batteries: Solvent-Free Layered-Oxide Cathodes and Aqueous-Processed Hard Carbon Anodes for Cost-Effective Full-Cell Manufacturing 钠离子电池的规模化生产:无溶剂层状氧化物阴极和水处理硬碳阳极,用于成本效益高的全电池制造
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2025-01-25 DOI: 10.1002/batt.202400572
Johannes Kühn, Florian Schmidt, Pascal Seete, Tom Boenke, Florian S. Hoffmann, Arthur Dupuy, Benjamin Schumm, Thomas Abendroth, Holger Althues, Stefan Kaskel
{"title":"Towards Scalable Production of Sodium-Ion Batteries: Solvent-Free Layered-Oxide Cathodes and Aqueous-Processed Hard Carbon Anodes for Cost-Effective Full-Cell Manufacturing","authors":"Johannes Kühn,&nbsp;Florian Schmidt,&nbsp;Pascal Seete,&nbsp;Tom Boenke,&nbsp;Florian S. Hoffmann,&nbsp;Arthur Dupuy,&nbsp;Benjamin Schumm,&nbsp;Thomas Abendroth,&nbsp;Holger Althues,&nbsp;Stefan Kaskel","doi":"10.1002/batt.202400572","DOIUrl":"https://doi.org/10.1002/batt.202400572","url":null,"abstract":"<p>Achieving commercial viability for more sustainable sodium-ion batteries (SIB) necessitates reducing the environmental impact of production, particularly originating from electrode drying and the use of toxic solvents like N-methyl-2-pyrrolidone (NMP). This study presents the dry-processing of commercial P2-type Na<sub>0.75</sub>Ni<sub>0.25</sub>Fe<sub>0.25</sub>Mn<sub>0.50</sub>O<sub>2</sub> (NFM) via the DRYtraec® process, aiming to lower the binder content of 1 wt.% polytetrafluoroethylene (PTFE) and eliminating the need for electrode drying and NMP recovery. Assessments of electrode morphology and active material crystallinity were conducted to gauge the effects of mechanical stress during processing. The resulting cathodes, loaded at a commercially relevant 2.3–2.7 mAh cm<sup>−2</sup> loading, were successfully paired with aqueous-processed hard carbon (HC) anodes, demonstrating stable performance in full-cells. Comparative analysis with entirely wet-processed electrodes revealed comparable capacity accessibility and comparable long-term stability. This showed the competitiveness of dry-processed cathodes. Finally, the integration of NMP-free, dry-processed cathodes and aqueous-processed anodes was scaled to the commercially relevant prototype pouch-cell. The cell demonstrates stable cycling for 400 cycles with an energy density of 102 Wh kg<sup>−1</sup> as well as reduced processing costs and environmental footprint.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 5","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400572","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elliptical Silicon Nanowire Covered by the SEI in a 2D Chemo-Mechanical Simulation 椭圆硅纳米线覆盖的SEI在二维化学-机械模拟
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2025-01-24 DOI: 10.1002/batt.202400604
Raphael Schoof, Lukas Köbbing, Prof. Dr. Arnulf Latz, Prof. Dr. Birger Horstmann, Prof. Dr. Willy Dörfler
{"title":"Elliptical Silicon Nanowire Covered by the SEI in a 2D Chemo-Mechanical Simulation","authors":"Raphael Schoof,&nbsp;Lukas Köbbing,&nbsp;Prof. Dr. Arnulf Latz,&nbsp;Prof. Dr. Birger Horstmann,&nbsp;Prof. Dr. Willy Dörfler","doi":"10.1002/batt.202400604","DOIUrl":"https://doi.org/10.1002/batt.202400604","url":null,"abstract":"<p>Understanding the mechanical interplay between silicon anodes and their surrounding solid-electrolyte interphase (SEI) is essential to improve the next generation of lithium-ion batteries. We model and simulate a 2D elliptical silicon nanowire with SEI via a thermodynamically consistent chemo-mechanical continuum ansatz using a higher order finite element method in combination with a variable-step, variable-order time integration scheme. Considering a soft viscoplastic SEI for three half cycles, we see at the minor half-axis the largest stress magnitude at the silicon nanowire surface, leading to a concentration anomaly. This anomaly is caused by the shape of the nanowire itself and not by the SEI. Also for the tangential stress of the SEI, the largest stress magnitudes are at this point, which can lead to SEI fracture. However, for a stiff SEI, the largest stress magnitude inside the nanowire occurs at the major half-axis, causing a reduced concentration distribution in this area. The largest tangential stress of the SEI is still at the minor half-axis. In total, we demonstrate the importance of considering the mechanics of the anode and SEI in silicon anode simulations and encourage further numerical and model improvements.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 5","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400604","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical Properties of Cycled Single Crystal LiNi0.8Mn0.1Co0.1O2 (NMC811) Particles 循环单晶LiNi0.8Mn0.1Co0.1O2 (NMC811)颗粒的力学性能
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2025-01-24 DOI: 10.1002/batt.202400691
Ashutosh Jangde, Mirtunjay Kumar, İdris Tuğrul Gülenç, Laura Wheatcroft, Beverley J. Inkson
{"title":"Mechanical Properties of Cycled Single Crystal LiNi0.8Mn0.1Co0.1O2 (NMC811) Particles","authors":"Ashutosh Jangde,&nbsp;Mirtunjay Kumar,&nbsp;İdris Tuğrul Gülenç,&nbsp;Laura Wheatcroft,&nbsp;Beverley J. Inkson","doi":"10.1002/batt.202400691","DOIUrl":"https://doi.org/10.1002/batt.202400691","url":null,"abstract":"<p>Single crystal (SC) particle morphologies are attracting significant attention as an alternative to polycrystalline (PC) secondary particles within battery cathodes, to circumvent the degradation paths associated with weak grain boundaries. In the pristine state, the key cathode material LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811) exhibits anisotropic mechanical behaviour due to its trigonal <span></span><math></math>\u0000 crystal lattice. Here the mechanical properties of cycled SC NMC811 particles are evaluated in real time using in situ compression in a scanning electron microscope (SEM), as a function of both particle orientation, and electrochemical charge-discharge rate. After 100 cycles, the SC NMC811 particles retain their external morphology, however their non-basal and basal plane fracture strengths systematically decrease as a function of increasing charge rate C/10→2 C, consistent with accelerated lattice degradation. For all charge rates, the cycled and discharged NMC811 single crystal particles retain the <span></span><math></math>\u0000 crystallographic dependence of their strength and deformation mechanisms, with cycled SC particles strongest for compression normal to the (0001) layered structure. The accelerated mechanical softening of cycled NMC811 SC particles at higher C-rates occurs in parallel with degradation of the electrochemical performance of the NMC811 single crystals, and indicates a higher risk of fracture-related degradation processes with fast-charging regimes.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 6","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400691","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144339650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the Degradation Mechanism of LiNbO3-Coated NCM Cathode at High Potential in All-Solid-State Batteries Using 10 K Extended X-ray Absorption Fine Structure Analysis 利用10k扩展x射线吸收精细结构分析揭示全固态电池高电位下linbo3包覆NCM阴极的降解机理
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2025-01-22 DOI: 10.1002/batt.202400697
Yong Jun Park, Yixiao Su, Kentaro Yamamoto, Toshiki Watanabe, Neha Thakur, Mukesh Kumar, Toshiyuki Matsunaga, Yoshiharu Uchimoto
{"title":"Unraveling the Degradation Mechanism of LiNbO3-Coated NCM Cathode at High Potential in All-Solid-State Batteries Using 10 K Extended X-ray Absorption Fine Structure Analysis","authors":"Yong Jun Park,&nbsp;Yixiao Su,&nbsp;Kentaro Yamamoto,&nbsp;Toshiki Watanabe,&nbsp;Neha Thakur,&nbsp;Mukesh Kumar,&nbsp;Toshiyuki Matsunaga,&nbsp;Yoshiharu Uchimoto","doi":"10.1002/batt.202400697","DOIUrl":"https://doi.org/10.1002/batt.202400697","url":null,"abstract":"<p>All solid-state batteries (ASSBs) utilizing sulfide-based solid electrolytes hold promise for enhancing battery energy density while mitigating safety concerns, thus meeting the stringent requirements for electric vehicle applications. For the practical application of ASSBs, it is important to stabilize the interface between the solid electrolyte and the cathode. Although cathode coated with a thin layer of LiNbO<sub>3</sub> provide higher interface stability, which significantly improves charge-discharge and cycle performance, degradation at high potentials has also been noted. In this study, we focused on the degradation mechanism of LiNbO<sub>3</sub>-coated LiNi<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>O<sub>2</sub> cathode active materials at high potentials by using three electrode system for ASSBs, which allows separating the impedance measurement of the interface between cathode and solid electrolyte. We performed X-ray absorption spectroscopy (XAS) measurements at low temperature (10 K) to analyze the local structure around Nb and correlate these findings with impedance measurements. Our results indicate that the impedance of LiNbO<sub>3</sub> increased rapidly due to the oxygen desorption reaction at high potentials. This study aims to elucidate the dynamic changes and degradation mechanism of LiNbO<sub>3</sub>-coated LiNi<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>O<sub>2</sub> in ASSBs and provide new ideas for the design of interfacial coating materials.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 6","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144339234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alternative Multivalent Metal Elements for Aqueous Hybrid Supercapacitors 用于水混合超级电容器的可选多价金属元素
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2025-01-19 DOI: 10.1002/batt.202400680
Yan Huang, Guang Yu, Yujia Cheng, Ni Wang, Wencheng Hu
{"title":"Alternative Multivalent Metal Elements for Aqueous Hybrid Supercapacitors","authors":"Yan Huang,&nbsp;Guang Yu,&nbsp;Yujia Cheng,&nbsp;Ni Wang,&nbsp;Wencheng Hu","doi":"10.1002/batt.202400680","DOIUrl":"https://doi.org/10.1002/batt.202400680","url":null,"abstract":"<p>The growing importance of sustainable and clean energy sources is a direct consequence of the increasing scarcity of non-renewable resources and the necessity for energy storage solutions that are safe, efficient, and adaptable. Aqueous hybrid supercapacitors (AHSCs) have garnered attention due to their advantageous characteristics, including low cost, safety, reliability, and high cyclic stability. Here, this review provides a brief overview of the energy storage mechanisms of double electric layer capacitors (EDLCs), pseudocapacitors, and hybrid supercapacitors (HSCs), which combine the features of both of these types of capacitors. The progress made in recent years in research on AHSCs using multivalent metal cations, including manganese, zinc, and chromium, is highlighted. Additionally, some examples of AHSCs assembled with the participation of metal ions are summarized based on the metal activity series. Furthermore, the potential use of other multivalent metals, including iron, cobalt, nickel, and copper, in AHSCs electrodes was explored, as well as the current status of aqueous ammonium-ionized HSCs, with a focus on their respective advantages and challenges. Finally, this review proposes future research directions to further advance this field.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 6","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144339070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信