微结构控制的400 μm厚全固态电池复合阴极裂纹的自闭:原位扫描电镜-能量色散x射线能谱观察

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Kenta Watanabe, Han-Seul Kim, Kazuhiro Hikima, Naoki Matsui, Kota Suzuki, Hiroyuki Muto, Atsunori Matsuda, Ryoji Kanno, Masaaki Hirayama
{"title":"微结构控制的400 μm厚全固态电池复合阴极裂纹的自闭:原位扫描电镜-能量色散x射线能谱观察","authors":"Kenta Watanabe,&nbsp;Han-Seul Kim,&nbsp;Kazuhiro Hikima,&nbsp;Naoki Matsui,&nbsp;Kota Suzuki,&nbsp;Hiroyuki Muto,&nbsp;Atsunori Matsuda,&nbsp;Ryoji Kanno,&nbsp;Masaaki Hirayama","doi":"10.1002/batt.202500119","DOIUrl":null,"url":null,"abstract":"<p>All-solid-state batteries (ASSBs) are a promising next-generation secondary battery technology. To achieve high energy and power densities, the thickness of composite electrodes must be increased. The microstructure and mechanical properties of the composites must be carefully controlled to ensure sufficient contact between particles. The 400 μm-thick LiCoO<sub>2</sub>-Li<sub>10.35</sub>Ge<sub>1.35</sub>P<sub>1.65</sub>S<sub>12</sub> (LCO–LGPS) composites are fabricated using LGPS with various particle sizes. The composites using small-sized LGPS particles exhibited higher capacity and retention than those using large-sized particles. <i>In situ</i> cross-sectional scanning electron microscopy with energy-dispersive X-ray spectroscopy reveals that the cracks generated during charging demonstrated self-closing during discharge in the composite with small-sized LGPS regardless of the generated locations, leading to high-capacity retention. However, this self-closing is not observed in the composite using large-sized LGPS. The self-closing behavior depends on the microstructure and mechanical properties of ASSBs. Furthermore, this self-closing finding provides new strategies for designing the microstructure and mechanical properties of ASSBs.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 6","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202500119","citationCount":"0","resultStr":"{\"title\":\"Self-Closing of Cracks Generated in Microstructure-Controlled 400 μm-Thick Composite Cathodes for All-Solid-State Batteries: Observed by In Situ Scanning Electron Microscopy with Energy-Dispersive X-Ray Spectroscopy\",\"authors\":\"Kenta Watanabe,&nbsp;Han-Seul Kim,&nbsp;Kazuhiro Hikima,&nbsp;Naoki Matsui,&nbsp;Kota Suzuki,&nbsp;Hiroyuki Muto,&nbsp;Atsunori Matsuda,&nbsp;Ryoji Kanno,&nbsp;Masaaki Hirayama\",\"doi\":\"10.1002/batt.202500119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>All-solid-state batteries (ASSBs) are a promising next-generation secondary battery technology. To achieve high energy and power densities, the thickness of composite electrodes must be increased. The microstructure and mechanical properties of the composites must be carefully controlled to ensure sufficient contact between particles. The 400 μm-thick LiCoO<sub>2</sub>-Li<sub>10.35</sub>Ge<sub>1.35</sub>P<sub>1.65</sub>S<sub>12</sub> (LCO–LGPS) composites are fabricated using LGPS with various particle sizes. The composites using small-sized LGPS particles exhibited higher capacity and retention than those using large-sized particles. <i>In situ</i> cross-sectional scanning electron microscopy with energy-dispersive X-ray spectroscopy reveals that the cracks generated during charging demonstrated self-closing during discharge in the composite with small-sized LGPS regardless of the generated locations, leading to high-capacity retention. However, this self-closing is not observed in the composite using large-sized LGPS. The self-closing behavior depends on the microstructure and mechanical properties of ASSBs. Furthermore, this self-closing finding provides new strategies for designing the microstructure and mechanical properties of ASSBs.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"8 6\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202500119\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202500119\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202500119","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

全固态电池(assb)是一种很有前途的下一代二次电池技术。为了达到高能量和功率密度,必须增加复合电极的厚度。复合材料的微观结构和力学性能必须仔细控制,以确保颗粒之间充分接触。采用不同粒径的LGPS制备了400 μm厚的LiCoO2-Li10.35Ge1.35P1.65S12 (LCO-LGPS)复合材料。使用小尺寸LGPS颗粒的复合材料比使用大尺寸LGPS颗粒的复合材料具有更高的容量和保留率。原位横断面扫描电镜和能量色散x射线能谱分析表明,在小尺寸LGPS的复合材料中,充电过程中产生的裂纹在放电过程中表现为自闭合,而与产生的位置无关,从而导致高容量保留。然而,在使用大尺寸LGPS的复合材料中没有观察到这种自闭合。自闭行为取决于assb的显微组织和力学性能。此外,这种自闭合的发现为设计assb的微观结构和力学性能提供了新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Closing of Cracks Generated in Microstructure-Controlled 400 μm-Thick Composite Cathodes for All-Solid-State Batteries: Observed by In Situ Scanning Electron Microscopy with Energy-Dispersive X-Ray Spectroscopy

All-solid-state batteries (ASSBs) are a promising next-generation secondary battery technology. To achieve high energy and power densities, the thickness of composite electrodes must be increased. The microstructure and mechanical properties of the composites must be carefully controlled to ensure sufficient contact between particles. The 400 μm-thick LiCoO2-Li10.35Ge1.35P1.65S12 (LCO–LGPS) composites are fabricated using LGPS with various particle sizes. The composites using small-sized LGPS particles exhibited higher capacity and retention than those using large-sized particles. In situ cross-sectional scanning electron microscopy with energy-dispersive X-ray spectroscopy reveals that the cracks generated during charging demonstrated self-closing during discharge in the composite with small-sized LGPS regardless of the generated locations, leading to high-capacity retention. However, this self-closing is not observed in the composite using large-sized LGPS. The self-closing behavior depends on the microstructure and mechanical properties of ASSBs. Furthermore, this self-closing finding provides new strategies for designing the microstructure and mechanical properties of ASSBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信