NaSICON玻璃陶瓷微结构性能对离子和热输运的影响

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Frank Tietz, Philipp Odenwald, Doris Sebold, Mareen Schaller, Thorben Böger, Jan Köttgen, Qianli Ma, Sylvio Indris, Wolfgang G. Zeier, Oana Cojocaru-Mirédin, Dina Fattakhova-Rohlfing
{"title":"NaSICON玻璃陶瓷微结构性能对离子和热输运的影响","authors":"Frank Tietz,&nbsp;Philipp Odenwald,&nbsp;Doris Sebold,&nbsp;Mareen Schaller,&nbsp;Thorben Böger,&nbsp;Jan Köttgen,&nbsp;Qianli Ma,&nbsp;Sylvio Indris,&nbsp;Wolfgang G. Zeier,&nbsp;Oana Cojocaru-Mirédin,&nbsp;Dina Fattakhova-Rohlfing","doi":"10.1002/batt.202500093","DOIUrl":null,"url":null,"abstract":"<p>Two composition series of Zr-deficient NaSICON materials are investigated with respect to their ionic and thermal transport properties. The bulk conductivity varies between 1.4 and 6.6 mS cm<sup>−1</sup>. The total conductivity showdecreasing values with increasing Zr deficiency due to the impact of the increasing fraction of glass phase. The calculated grain boundary conductivity is about two orders of magnitude lower than the total conductivity but does not correspond to the conductivity of any known glass composition of sodium silicates/phosphates. Nuclear magnetic resonance reveals three <sup>23</sup>Na relaxation rates, the fastest of which is attributed to the NaSICON phase and the two slower relaxation rates to sodium orthophosphates and the glass phase. Thermal conductivity varies between 0.9 and 1.0 W m<sup>−1</sup> K<sup>−1</sup> at 25 °C. At elevated temperatures, a clear trend is observed toward lower thermal conductivity with a higher glass fraction. In addition, atom probe tomography is applied to precisely quantify the composition of specific microstructural regions found within the glassy phase. A scanning electron microscopy study of the surfaces of sintered pellets shows an increasing amount of glass phase between the NaSICON particles with increasing Zr deficiency. Furthermore, a time-dependent phase separation is observed in relation to the dynamic formation and dissolution of Na<sub>3</sub>PO<sub>4</sub> domains.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 6","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202500093","citationCount":"0","resultStr":"{\"title\":\"Impact of Microstructural Properties on Ionic and Heat Transport in NaSICON Glass Ceramics\",\"authors\":\"Frank Tietz,&nbsp;Philipp Odenwald,&nbsp;Doris Sebold,&nbsp;Mareen Schaller,&nbsp;Thorben Böger,&nbsp;Jan Köttgen,&nbsp;Qianli Ma,&nbsp;Sylvio Indris,&nbsp;Wolfgang G. Zeier,&nbsp;Oana Cojocaru-Mirédin,&nbsp;Dina Fattakhova-Rohlfing\",\"doi\":\"10.1002/batt.202500093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two composition series of Zr-deficient NaSICON materials are investigated with respect to their ionic and thermal transport properties. The bulk conductivity varies between 1.4 and 6.6 mS cm<sup>−1</sup>. The total conductivity showdecreasing values with increasing Zr deficiency due to the impact of the increasing fraction of glass phase. The calculated grain boundary conductivity is about two orders of magnitude lower than the total conductivity but does not correspond to the conductivity of any known glass composition of sodium silicates/phosphates. Nuclear magnetic resonance reveals three <sup>23</sup>Na relaxation rates, the fastest of which is attributed to the NaSICON phase and the two slower relaxation rates to sodium orthophosphates and the glass phase. Thermal conductivity varies between 0.9 and 1.0 W m<sup>−1</sup> K<sup>−1</sup> at 25 °C. At elevated temperatures, a clear trend is observed toward lower thermal conductivity with a higher glass fraction. In addition, atom probe tomography is applied to precisely quantify the composition of specific microstructural regions found within the glassy phase. A scanning electron microscopy study of the surfaces of sintered pellets shows an increasing amount of glass phase between the NaSICON particles with increasing Zr deficiency. Furthermore, a time-dependent phase separation is observed in relation to the dynamic formation and dissolution of Na<sub>3</sub>PO<sub>4</sub> domains.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"8 6\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202500093\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202500093\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202500093","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

研究了两种组成系列的缺锆NaSICON材料的离子和热输运性质。体积电导率在1.4 ~ 6.6 mS cm−1之间变化。随着Zr缺乏量的增加,总电导率随玻璃相含量的增加而减小。计算得到的晶界电导率比总电导率低约两个数量级,但与任何已知的硅酸钠/磷酸钠玻璃成分的电导率都不相符。核磁共振显示了三种23Na弛豫速率,其中最快的弛豫速率归因于NaSICON相,而两个较慢的弛豫速率归因于正磷酸钠和玻璃相。在25℃时,导热系数在0.9 ~ 1.0 W m−1 K−1之间。在较高的温度下,观察到一个明显的趋势,即随着玻璃含量的增加,导热系数降低。此外,原子探针层析成像用于精确量化玻璃相内特定微观结构区域的组成。烧结球团表面的扫描电镜研究表明,随着Zr缺乏症的增加,NaSICON颗粒之间的玻璃相数量增加。此外,观察到与Na3PO4结构域的动态形成和溶解有关的时间依赖的相分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Microstructural Properties on Ionic and Heat Transport in NaSICON Glass Ceramics

Two composition series of Zr-deficient NaSICON materials are investigated with respect to their ionic and thermal transport properties. The bulk conductivity varies between 1.4 and 6.6 mS cm−1. The total conductivity showdecreasing values with increasing Zr deficiency due to the impact of the increasing fraction of glass phase. The calculated grain boundary conductivity is about two orders of magnitude lower than the total conductivity but does not correspond to the conductivity of any known glass composition of sodium silicates/phosphates. Nuclear magnetic resonance reveals three 23Na relaxation rates, the fastest of which is attributed to the NaSICON phase and the two slower relaxation rates to sodium orthophosphates and the glass phase. Thermal conductivity varies between 0.9 and 1.0 W m−1 K−1 at 25 °C. At elevated temperatures, a clear trend is observed toward lower thermal conductivity with a higher glass fraction. In addition, atom probe tomography is applied to precisely quantify the composition of specific microstructural regions found within the glassy phase. A scanning electron microscopy study of the surfaces of sintered pellets shows an increasing amount of glass phase between the NaSICON particles with increasing Zr deficiency. Furthermore, a time-dependent phase separation is observed in relation to the dynamic formation and dissolution of Na3PO4 domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信