{"title":"Synergistic Dual Electrolyte System of LATP and In- Situ Solod-State PDOL System and its Improvement on the Performance of NCM811 Batteries","authors":"Jian-Hua Cao, Peng Zhang, Ya-kun Wang, Da-Yong Wu","doi":"10.1002/batt.202400463","DOIUrl":"https://doi.org/10.1002/batt.202400463","url":null,"abstract":"<p>1,3-Dioxolane (DOL) can undergo in-situ polymerization in batteries to form solid-state organic electrolyte PDOL. When applied to NCM811||Li battery system, PDOL electrolyte helps optimize the contact and interface stability between electrolyte and electrodes. This study explores the effects of PDOL with PE separators coated with Li1<sub>.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub>(LATP) on the performance of NCM811||Li batteries. 2,2,2-trifluoroethyl phosphite (DETFPi), was mixed with DOL at a 1 : 35 mass ratio. Then, LiBF<sub>4</sub> was used to initiate in-situ polymerization and thereby obtained DETFPi-PDOL electrolyte after 24 h at room temperature. The composite electrolyte exhibits enhanced ion conductivity (1.59×10<sup>−4</sup> S cm<sup>−1</sup>), high lithium ion transference number (0.78), wide electrochemical stability window (4.53 V), and high critical current density (2.2 mA cm<sup>−2</sup>). Li||PDOL@LATP||Li battery shows extremely low overpotential (35 mV) after a constant current stable cycle of 500 h at 1.0 mA cm<sup>−2</sup>. After 500 cycles at 1 C, the remaining capacity is 153.9 mAh g<sup>−1</sup> with a capacity retention of 82.1 % in NCM811||PDOL@LATP||Li batteries. This indicates that the LATP coating on the surface of the PE separator plays an important role in optimizing the performance of DETFPI-PDOL electrolyte batteries. LATP and DETFPI-PDOL are effective in improving the cycling stability, rate performance, and interface state of NCM811 batteries.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flexible Micro-Supercapacitors with Enhanced Energy Density Utilizing Flash Lamp Annealed Graphene-Carbon Nanotube Composite Electrodes","authors":"Yusik Myung, TaeYoung Kim","doi":"10.1002/batt.202400557","DOIUrl":"https://doi.org/10.1002/batt.202400557","url":null,"abstract":"<p>As demand for micro-power sources grows, micro-supercapacitors (MSCs) have become critical for miniaturized devices, offering robust electrochemical energy storage. However, the challenge remains to develop a simple, scalable fabrication method that achieves both high energy and power densities. In this study, we present a refined approach to fabricating MSCs with 3D interconnected graphene/carbon nanotube (CNT) composite electrodes. Our method combines flash lamp annealing (FLA) and laser ablation, where FLA converts graphene oxide (GO) and CNT composite films into 3D-structured graphene/CNT electrodes, and laser ablation precisely patterns them into interdigitated designs. This dual-process technique produces MSCs with exceptional electrochemical performance, including an impressive areal capacitance of 26.11 mF/cm<sup>2</sup> and a volumetric capacitance of 31.88 F/cm<sup>3</sup>. These devices also achieve energy densities of 3.72 μWh/cm<sup>2</sup> and 4.43 mWh/cm<sup>3</sup>, maintaining 97 % of their initial capacitance under extreme bending, demonstrating outstanding mechanical flexibility and durability. Furthermore, the scalability of this method was validated by configuring MSCs in series and parallel, achieving enhanced voltage and current outputs without additional interconnections. Overall, the integration of FLA and laser ablation holds significant promise for advancing the performance and scalability of micro-sized energy storage devices, addressing the growing need for efficient, flexible, and high-capacity micro-power sources.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. J. Jiménez, J. Juan, M.S. Sandoval, P. Bechthold, P. V. Jasen, E. A. González, A. Juan
{"title":"Li Decorated Graphdiyne Nanosheets: A Theoretical Study for an Electrode Material for Nonaqueous Lithium Batteries","authors":"M. J. Jiménez, J. Juan, M.S. Sandoval, P. Bechthold, P. V. Jasen, E. A. González, A. Juan","doi":"10.1002/batt.202400514","DOIUrl":"https://doi.org/10.1002/batt.202400514","url":null,"abstract":"<p>In this work, Density Functional Theory (DFT) is used to study pristine and defective GDY. We investigate the effect of Li atom adsorption on the electronic and structural properties of this 2D material. In both cases, the Li atom is located at the corner of the triangular-like pore (H1), but with a slight shift for the defective system. In the perfect system, the Li−C bond distances range from 2.289 Å to 2.461 Å, while in the defective case, they range from 2.237 Å to 3.184 Å. In the perfect case, the GDY−Li system becomes metallic and the Li 2 s states are stabilized. Charge transfer to the surfaces occurs near the vicinity of the Li atom. The C vacancy generates new C=C bonds similar to double bonds, enhancing the interaction with Li through strong conjugation. After Li adsorption, the sum of bond order for all the C atoms increases in both structures, from 0.4 % to 6 %. The Li storage capacity without significant restructuring is six Li atoms. When the atom concentration increases, the OCV values for Li decrease from 0.93 V to 0.23 V. For defective GDY, the specific capacity is 788 mAhg<sub>−1</sub>, which is slightly higher than for pristine case.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tatiana K. Zakharchenko, Dmitriy I. Nikiforov, Georgiy D. Serdyukov, Pavel V. Komissarov, Mikhail O. Shkuratov, Alexander V. Dzuban, Grigorii P. Lakienko, Yuriy A. Gordienko, Lada V. Yashina, Daniil M. Itkis
{"title":"Thermal Runaway of Na-Ion Batteries with Na3V2O2(PO4)2F Cathodes","authors":"Tatiana K. Zakharchenko, Dmitriy I. Nikiforov, Georgiy D. Serdyukov, Pavel V. Komissarov, Mikhail O. Shkuratov, Alexander V. Dzuban, Grigorii P. Lakienko, Yuriy A. Gordienko, Lada V. Yashina, Daniil M. Itkis","doi":"10.1002/batt.202400386","DOIUrl":"https://doi.org/10.1002/batt.202400386","url":null,"abstract":"<p>The metal-ion battery manufacturing growth rates increase attention to the safety issues. For promising sodium-ion batteries, this topic has been studied in much less detail than for the lithium-ion ones. Here, we explored the thermal runaway process of Na-ion pouch cells with the Na<sub>3</sub>V<sub>2</sub>O<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F (NVOPF)-based cathode. The thermal runaway onset temperature for such cells is noticeably higher than that for the NMC-based LIBs. We show that thermal runaway is triggered by the anode and the separator decomposition rather than by the processes at the cathode. The composition of the gas mixture released during thermal runaway process is similar to that for Li-ion batteries. The results suggest that sodium-ion batteries based on polyanionic cathodes can pave the way to safer metal-ion energy storage technologies.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 2","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low Temperature and Rapid Synthesis of Li-Rich Li(Li0.17Mn0.83)2O4 Spinel Cathodes Derived from Metal-Organic Frameworks for Lithium-Ion Batteries","authors":"Ang Li, Ziqi Wang, Meihui Yu, Ze Chang","doi":"10.1002/batt.202400446","DOIUrl":"https://doi.org/10.1002/batt.202400446","url":null,"abstract":"<p>Li-rich spinel materials (Li<sub>1+<i>x</i></sub>Mn<sub>2−<i>x</i></sub>O<sub>4</sub>) have shown promise for lithium-ion batteries. Nevertheless, the preparation of Li<sub>1+<i>x</i></sub>Mn<sub>2−<i>x</i></sub>O<sub>4</sub> faces significant challenges due to the difficulty in achieving a balance between well-crystallized phases and stoichiometric chemistry. Moreover, the synthesis process is highly sensitive to calcination temperature and time, making it susceptible to phase transformations. Therefore, the rational selection of precursors and corresponding calcination procedures is absolutely essential. Herein, we make full use of the nature of metal-organic frameworks (MOFs) to achieve phase-controlled synthesis of Li(Li<sub>0.17</sub>Mn<sub>0.83</sub>)<sub>2</sub>O<sub>4</sub> (LMO−F) spinel cathodes in 8 minutes at 500 °C. The composition and structural evolution during the pyrolysis process were systematically investigated to clarify the relationship between precursors and derivatives. Notably, the LMO−F achieved good electrochemical performance with 100.4 mAh g<sup><b>−</b>1</sup> at 50 mA g<sup><b>−</b>1</sup> after 100 cycles.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metin Orbay, Abbas Khan, Olivier Crosnier, Thierry Brousse, Andrea Balducci
{"title":"Sodium and Potassium Storage Behaviour in AgNbO3 Perovskite","authors":"Metin Orbay, Abbas Khan, Olivier Crosnier, Thierry Brousse, Andrea Balducci","doi":"10.1002/batt.202400602","DOIUrl":"https://doi.org/10.1002/batt.202400602","url":null,"abstract":"<p>In this work, we report on the investigation the perovskite-type AgNbO<sub>3</sub> as a model negative electrode for sodium and potassium systems. We demonstrated that during the initial discharge, regardless of the inserted cation, the material undergoes an activation mechanism that induces a crystalline-to-amorphous transition. This transition, in turn, leads to an enhancement of the electrode capacity. At 5 A g<sup>−1</sup> sodium-ion AgNbO<sub>3</sub> and Potassium-ion AgNbO<sub>3</sub> display capacities of 81 mAh g<sup>−1</sup> and 60 mAh g<sup>−1</sup>, respectively. Furthermore, both electrodes display good cycling stability and efficiency over 350 cycles at 1 A g<sup>−1</sup>.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 5","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400602","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shu Wang, Haohan Yu, Zerui Fu, Dapeng Liu, Yu Zhang
{"title":"Non-Aqueous Liquid Electrolytes for Li-O2 Batteries","authors":"Shu Wang, Haohan Yu, Zerui Fu, Dapeng Liu, Yu Zhang","doi":"10.1002/batt.202400550","DOIUrl":"https://doi.org/10.1002/batt.202400550","url":null,"abstract":"<p>Li-O<sub>2</sub> batteries (LOBs) have become a research hotspot of energy storage devices because of its high theoretical energy density. Practical applications require that non-aqueous LOBs can deliver stable and high reversible capacity, which heavily depends on the appropriate electrolyte system. Therefore, it is very important to select electrolytes that are hard to decompose and conducive to modulating the growth kinetics of discharge products. Herein, we will review the current progress and challenges of non-aqueous liquid electrolytes for LOBs by analyzing the influence factors on electrolyte stability and introducing the design and modification methods of electrolytes with different solvent types. At last, the possible research tactics have been proposed to develop advanced electrolytes for improving electrochemical performance of LOBs.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 4","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143826942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richard Stockhausen, Lydia Gehrlein, Thomas Bergfeldt, Andreas Hofmann, Freya Janina Müller, Julia Maibach, Katarzyna Hofmann, Ronald Gordon, Anna Smith
{"title":"Investigating the Reduction of Fluoroethylene Carbonate and Vinylene Carbonate in Lithium-Ion Cells with Silicon-Graphite Anodes","authors":"Richard Stockhausen, Lydia Gehrlein, Thomas Bergfeldt, Andreas Hofmann, Freya Janina Müller, Julia Maibach, Katarzyna Hofmann, Ronald Gordon, Anna Smith","doi":"10.1002/batt.202400499","DOIUrl":"https://doi.org/10.1002/batt.202400499","url":null,"abstract":"<p>The electrolyte additives fluoroethylene carbonate (FEC) and vinylene carbonate (VC) improve the lifetime of lithium-ion batteries with silicon-containing anodes by their reduction yielding a more stable solid electrolyte interphase (SEI). However, the reductive decomposition mechanism of FEC and VC has not yet been fully clarified. For this purpose, we investigate the electrolyte decomposition in LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub> (NCM622)/silicon-graphite pouch cells containing either 1 M LiPF<sub>6</sub> in FEC:dimethyl carbonate (DMC) or 1 M LiPF<sub>6</sub> in VC:DMC using high-performance liquid chromatography, gas chromatography, X-ray photoelectron spectroscopy, and inductively coupled plasma optical emission spectrometry. Based on the molar consumptions of FEC and VC, and the cumulative irreversible capacities, we show that three electrons are consumed for every reduced FEC molecule, and that one electron is consumed for every reduced VC molecule. Based on the results, reactions of the FEC reduction are proposed yielding LiF, Li<sub>2</sub>CO<sub>3</sub>, Li<sub>2</sub>C<sub>2</sub>O<sub>4</sub>, HCO<sub>2</sub>Li, and a PEO-type polymer. Furthermore, the reaction of the VC reduction is proposed yielding lithium-containing, polymerized VC. During formation, the capacity loss of the cells is induced by lithium trapping in Li<sub>x</sub>Si<sub>y</sub>/Li<sub>x</sub>SiO<sub>y</sub> under the SEI and by lithium trapping in the SEI. During subsequent cycling, only lithium trapping in the SEI triggers the capacity loss.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 4","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400499","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143827069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michelle Lehmann, Tomonori Saito, Mohamed Kamaludeen, Guang Yang
{"title":"Development of Tailored Hydrocarbon-Based Pentablock Copolymer Membranes for Sodium-Polysulfide Flow Batteries","authors":"Michelle Lehmann, Tomonori Saito, Mohamed Kamaludeen, Guang Yang","doi":"10.1002/batt.202400401","DOIUrl":"https://doi.org/10.1002/batt.202400401","url":null,"abstract":"<p>Long-duration energy storage (LDES) technologies are pivotal for the adoption of renewables like wind and solar. Non-aqueous redox flow batteries (NARFBs) with a sodium-polysulfide hybrid system feature high energy density independent of power density, yet face challenges with polysulfide shuttling. This study investigates a hydrocarbon-based penta-block copolymer membrane, Nexar, to mitigate crossover effects by balancing TFSI conversion and their crosslink density. The membranes are annealed to induce crosslinking for reducing electrolyte uptake and enhancing mechanical stability while demonstrating excellent ionic conductivity. The hydrocarbon-based membranes address environmental concerns associated with perfluoroalkyl substances and improve the performance and durability of NARFBs. Our findings suggest that annealed Nexar membranes with tailored TFSI functionality offer a scalable, cost-effective solution for enhancing the efficiency of high-capacity energy storage systems, pivotal for grid integration of renewable sources.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 2","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rui Zhang, Xiangyu Liu, Xiaojing Wu, Tan Guo, Shan Yun, Lingyu Du, Litao Kang
{"title":"Constructing High-Performance Zn-Iodine Batteries with CuI-PVP Composite Layer Coated Zn Anodes","authors":"Rui Zhang, Xiangyu Liu, Xiaojing Wu, Tan Guo, Shan Yun, Lingyu Du, Litao Kang","doi":"10.1002/batt.202400427","DOIUrl":"https://doi.org/10.1002/batt.202400427","url":null,"abstract":"<p>Aqueous zinc-iodine (Zn-I<sub>2</sub>) batteries featuring abundant raw materials, inherent safety, excellent cost competitiveness and environmental benignity have been identified as one kind of important electrochemical energy storage devices. However, these batteries always suffer from inferior electrochemical performance, because of dendrite growth and corrosion/passivation of the anodes. Herein, a copper iodide-polyvinylpyrrolidone (CuI-PVP) composite layer is proposed to suppress the parasitic reactions and protect the Zn anodes. In this layer, the CuI can spontaneously react with metallic Zn and convert into Cu and Cu<sub>5</sub>Zn<sub>8</sub> (2<i>CuI</i>+<i>Zn</i>→2<i>Cu</i>+<i>ZnI<sub>2</sub></i>; 5<i>Cu</i>+8<i>Zn</i>→<i>Cu<sub>5</sub>Zn<sub>8</sub></i>). The highly zincophilic Cu and Cu<sub>5</sub>Zn<sub>8</sub>, as heterogeneous seeds, can guide the uniform Zn nucleation and deposition, while alleviating corrosion of the Zn anodes. At the same time, the iodide species releasing from the composite layer can be oxidized and deposited on the cathodes, contributing additional capacity. As a result, the symmetric cell prepared with the CuI-PVP@Zn anodes demonstrates a long cycling lifetime of 1400 hours at 1 mA cm<sup>−2</sup> and 1 mAh cm<sup>−2</sup>. Under an even higher current density of 5 mA cm<sup>−2</sup>, the CuI-PVP@Zn cell can still stably work for more than 660 hours. The practical application of this CuI-PVP@Zn electrode has been further demonstrated in Zn-I<sub>2</sub> full batteries, which achieve 60 % higher specific capacity than the untreated ones (251.4 vs. 157.1 mAh g<sup>−1</sup> after 2800 cycles).</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 2","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}