Sputtered Zero-Excess Electrodes with Metallic Seed Layers for Solid-State Sodium Batteries

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Ansgar Lowack, Paula Grun, Rafael Anton, Henry Auer, Kristian Nikolowski, Mareike Partsch, Mihails Kusnezoff, Alexander Michaelis
{"title":"Sputtered Zero-Excess Electrodes with Metallic Seed Layers for Solid-State Sodium Batteries","authors":"Ansgar Lowack,&nbsp;Paula Grun,&nbsp;Rafael Anton,&nbsp;Henry Auer,&nbsp;Kristian Nikolowski,&nbsp;Mareike Partsch,&nbsp;Mihails Kusnezoff,&nbsp;Alexander Michaelis","doi":"10.1002/batt.202400364","DOIUrl":null,"url":null,"abstract":"<p>Zero-excess sodium metal solid-state batteries offer improved safety, lower cost, higher energy density, and reduced resource dependency compared to today's lithium-ion technology. This study demonstrates the fabrication of zero-excess electrodes with unprecedented stability during plating/stripping cycles. The fabrication process involves the sputter deposition of 20 nm metallic seed layers – zinc, silver, indium, or tin – onto NASICON (Na<sub>3.4</sub>Zr<sub>2</sub>Si<sub>2.4</sub>P<sub>0.6</sub>O<sub>12</sub>) ceramic separators, followed by the sputter deposition of a 30 μm copper current collector. The favorable influence of these seed layers on the in-situ formation of the sodium|NASICON interface is examined through nucleation and cycling experiments, with a sodium metal reservoir serving as the non-limiting counter electrode. Due to alloy formation the seed layers – particularly tin – stabilize sodium nucleation and cycling substantially and reduce dendrite formation compared to reference cells with bare copper current collectors. Sodium loss during cycling is primarily attributed to local cracking of the current collector and its partial delamination from the NASICON. Compared to polished NASICON, a roughened surface reduces the resistance e. g. of the counter electrode 200-fold to approx. 1 Ωcm<sup>2</sup> at 3 MPa and suppresses delamination further.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 5","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400364","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400364","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Zero-excess sodium metal solid-state batteries offer improved safety, lower cost, higher energy density, and reduced resource dependency compared to today's lithium-ion technology. This study demonstrates the fabrication of zero-excess electrodes with unprecedented stability during plating/stripping cycles. The fabrication process involves the sputter deposition of 20 nm metallic seed layers – zinc, silver, indium, or tin – onto NASICON (Na3.4Zr2Si2.4P0.6O12) ceramic separators, followed by the sputter deposition of a 30 μm copper current collector. The favorable influence of these seed layers on the in-situ formation of the sodium|NASICON interface is examined through nucleation and cycling experiments, with a sodium metal reservoir serving as the non-limiting counter electrode. Due to alloy formation the seed layers – particularly tin – stabilize sodium nucleation and cycling substantially and reduce dendrite formation compared to reference cells with bare copper current collectors. Sodium loss during cycling is primarily attributed to local cracking of the current collector and its partial delamination from the NASICON. Compared to polished NASICON, a roughened surface reduces the resistance e. g. of the counter electrode 200-fold to approx. 1 Ωcm2 at 3 MPa and suppresses delamination further.

固体钠电池用金属种子层溅射零过量电极
与目前的锂离子技术相比,零过量钠金属固态电池具有更高的安全性、更低的成本、更高的能量密度,并减少了对资源的依赖。本研究展示了零过量电极的制造在电镀/剥离循环中具有前所未有的稳定性。该工艺包括在NASICON (Na3.4Zr2Si2.4P0.6O12)陶瓷分离器上溅射沉积20 nm的金属种子层(锌、银、铟或锡),然后溅射沉积30 μm的铜集流器。通过成核和循环实验考察了这些种子层对钠|NASICON界面原位形成的有利影响,并以金属钠储层作为非限制性对电极。由于合金的形成,种子层-特别是锡-稳定了钠的成核和循环,大大减少了枝晶的形成,与裸铜集热器的参考电池相比。循环过程中的钠损失主要是由于集流器的局部开裂及其与NASICON的部分分层造成的。与抛光的NASICON相比,粗糙的表面可以减少阻力。对电极的200倍左右。1 Ωcm2在3mpa下,进一步抑制分层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信