Materials TodayPub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.08.013
Shengshun Duan , Huiyun Zhang , Lei Liu , Yu Lin , Fangzhi Zhao , Pinzhen Chen , Shuze Cao , Kai Zhou , Changjiang Gao , Zhengfeng Liu , Qiongfeng Shi , Chengkuo Lee , Jun Wu
{"title":"A comprehensive review on triboelectric sensors and AI-integrated systems","authors":"Shengshun Duan , Huiyun Zhang , Lei Liu , Yu Lin , Fangzhi Zhao , Pinzhen Chen , Shuze Cao , Kai Zhou , Changjiang Gao , Zhengfeng Liu , Qiongfeng Shi , Chengkuo Lee , Jun Wu","doi":"10.1016/j.mattod.2024.08.013","DOIUrl":"10.1016/j.mattod.2024.08.013","url":null,"abstract":"<div><div>Triboelectric sensors, derived from triboelectric nanogenerators, generate electrical signals in response to mechanical stimuli. Its remarkable advantages of inherent self-powering, and ease of manufacture, combined with flexible electronics technologies, pave the way for the trillion-node IoT mission. Integration of machine learning into triboelectric sensing systems enables effective learning from sensory data and enhances task execution with increased intelligence. This comprehensive review explores the latest scientific and technological advancements in triboelectric sensors, providing insightful analyses in materials, physics, design principles, manufacturing strategies, monomodal and multimodal sensors, von Neumann architecture-based AI systems, and human-like neuromorphic systems. The discussion also covers diverse technological applications, including biomedicine, robotics, prosthetics, human–machine interfaces, AR/metaverse, smart homes, intelligent sports, and intelligent transportation. The narrative concludes by addressing existing challenges, contemplating potential applications, and outlining prospects in this burgeoning field. Covering from fundamental device physics, and AI integration strategies, to system applications, this review aims to illuminate the burgeoning field of triboelectric sensors, inspiring further innovation in self-powered AI-integrated systems and advanced applications, accelerating the paradigm shift toward the era of self-powered artificial intelligence of things.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 450-480"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Materials TodayPub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.08.014
Zeshuo Meng , Hengyue Xu , Zhengyan Du , Zijin Xu , Jian Xu , Wei Zhang , Xiaoying Hu , Haoteng Sun , Hongwei Tian , Jingsan Xu , Weitao Zheng , Sheng Dai
{"title":"Optimizing entropy-stabilized synthesis kinetics to modulate the oxygen evolution mechanism","authors":"Zeshuo Meng , Hengyue Xu , Zhengyan Du , Zijin Xu , Jian Xu , Wei Zhang , Xiaoying Hu , Haoteng Sun , Hongwei Tian , Jingsan Xu , Weitao Zheng , Sheng Dai","doi":"10.1016/j.mattod.2024.08.014","DOIUrl":"10.1016/j.mattod.2024.08.014","url":null,"abstract":"<div><div>Adapting the catalytic reaction pathway and optimizing catalyst activity is a significant challenge in the field of catalysis. Herein, we derived the fundamental form of the diffusion flux-driving force equation using ion diffusion as a research framework, and defined the linear and exponential control coefficients that influence synthesis kinetics. By manipulating these control coefficients, we synthesized high-entropy perovskite La(Co<sub>0.2</sub>Cr<sub>0.2</sub>Fe<sub>0.2</sub>Mn<sub>0.2</sub>Ni<sub>0.2</sub>)O<sub>3</sub> samples with different degrees of kinetic control. Phase testing results showed that adjusting the control coefficients resulted in varying degrees of kinetic control. Experimental evidence and theoretical simulations demonstrated that samples with a higher proportion of kinetic control exhibited faster catalytic pathways, following the lattice oxygen oxidation mechanism (LOM), and showed the highest catalytic activity. As the proportion of kinetic control decreased, the oxygen evolution reaction (OER) catalytic pathway underwent corresponding transitions. These findings contribute to a new research paradigm aimed at bridging the gap between synthesis design and catalytic performance.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 167-178"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Materials TodayPub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.08.007
Syed I.A. Jalali , Michael S. Patullo , Noah Philips , Kevin J. Hemker
{"title":"Capturing the ultrahigh temperature response of materials with sub-scale tensile testing","authors":"Syed I.A. Jalali , Michael S. Patullo , Noah Philips , Kevin J. Hemker","doi":"10.1016/j.mattod.2024.08.007","DOIUrl":"10.1016/j.mattod.2024.08.007","url":null,"abstract":"<div><div>Materials that can maintain their strength at extreme temperatures are in great demand. Efforts to develop ultrahigh temperature materials are underway, but ultrahigh temperature data is hard to find, and tensile tests conducted above 1400 °C are expensive and extremely rare. Here, we demonstrate Joule heating of sub-scale specimens as a promising alternative for conducting ultrahigh temperature tensile tests. Challenges associated with testing at extreme temperatures have been addressed, and unique advantages of the new methodology include rapid heating (and cooling) of specimens to temperatures as high as their melting temperatures, in vacuum, with in situ temperature and strain measurement. Proof-of-concept tensile tests on ATI C103™ were conducted at temperatures ranging from 25 to 2,000 °C, and the results are shown to be in excellent agreement with proprietary datasets. This new test methodology has unveiled a new ultrahigh temperature plateau in the ATI C103™ alloy above 1500 °C and opens the door for exploring ultrahigh temperature deformation mechanisms in a wide variety of materials.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 87-100"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Materials TodayPub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.08.012
Juan Kuang , Qianqian Wang , Zhe Jia , Guoming Yi , Bo Sun , Yiyuan Yang , Ligang Sun , Ping Zhang , Pengfei He , Yue Xing , Xiubing Liang , Yang Lu , Baolong Shen
{"title":"Ablation-resistant yttrium-modified high-entropy refractory metal silicide (NbMoTaW)Si2 coating for oxidizing environments up to 2100 °C","authors":"Juan Kuang , Qianqian Wang , Zhe Jia , Guoming Yi , Bo Sun , Yiyuan Yang , Ligang Sun , Ping Zhang , Pengfei He , Yue Xing , Xiubing Liang , Yang Lu , Baolong Shen","doi":"10.1016/j.mattod.2024.08.012","DOIUrl":"10.1016/j.mattod.2024.08.012","url":null,"abstract":"<div><div>Refractory high-entropy alloys (RHEAs) are pivotal in ultra-high temperature applications, such as rocket nozzles, aerospace engines, and leading edges of hypersonic vehicles due to their exceptional mechanical ability to withstand severe thermal environments (in excess of 2000 °C). However, the selection of materials that satisfy the stringent criteria required for effective ablation resistance remains notably restricted. Here, a novel yttrium-modified high-entropy refractory metal silicide (Y-HERMS) coated on a refractory high-entropy NbMoTaW alloy is developed via pack cementation process. The developed Y-HERMS coating with sluggish diffusion effect demonstrates extraordinary ablation resistance, maintaining near-zero damage at sustained temperatures up to 2100 °C for a duration of 180 s, surpassing state-of-the-art high-performance silicide coatings. Such exceptional ultra-high ablation performance is primarily ascribed to the in-situ development of a high viscosity Si-Y-O oxide layer with increased thermal stability and the presence of high-melting Y(Nb<sub>0.5</sub>Ta<sub>0.5</sub>)O<sub>4</sub> oxides as skeleton structure. Theoretical results elucidate that the Y-HERMS promotes the formation of SiO<sub>2</sub>, which impedes the diffusion of O into metal silicide layer, synergistically contributing to the superior ablation resistance. These findings highlight the potential of utilizing high-entropy materials with excellent ablation resistance in extreme thermal environments.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 156-166"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Materials TodayPub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.08.018
Ziheng Zhan , Yan Su , Mingzhu Xie , Yinfeng Li , Yong Shuai , Zhaolong Wang
{"title":"Recent advances and challenges for bionic solar water evaporation","authors":"Ziheng Zhan , Yan Su , Mingzhu Xie , Yinfeng Li , Yong Shuai , Zhaolong Wang","doi":"10.1016/j.mattod.2024.08.018","DOIUrl":"10.1016/j.mattod.2024.08.018","url":null,"abstract":"<div><div>Solar water evaporation is a sustainable, efficient, and environmental friendly solution to the freshwater production and energy crisis, which is drawing intensive research interest in recent years all over the world. In this work, we systematically summarize the design principles and recent progress of solar evaporators inspired by nature. Evaporation systems with bionic structures such as roots, stems, leaves, and even animal tissues can not only promote water transport inside the absorbers but also accelerate the solar water evaporation process, leading to a high evaporation rate and energy conversion efficiency. Most significantly, the promising applications of solar vapor generation for seawater desalination, water purification, electricity generation, evaporative cooling and photocatalytic degradation are also highlighted. Finally, the prospects and challenges of the future development of solar water evaporation are discussed in detail.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 529-548"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Materials TodayPub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.08.004
Zijiao Wu , Xiangyu Zhu , Yaozu Shen , Xiaobin Zong , Yuan Wu , Qingxiao Wang , Jianguo Tang , Zhengqi Wang , Huihui Zhu , Xiaoyuan Yuan , Zhiliang Zhou , Xiongjun Liu , Xiaobin Zhang , Hui Wang , Suihe Jiang , Moon J. Kim , Zhaoping Lu
{"title":"High-entropy MAX phase with ultrahigh strength and large plasticity mediated by local chemical fluctuations","authors":"Zijiao Wu , Xiangyu Zhu , Yaozu Shen , Xiaobin Zong , Yuan Wu , Qingxiao Wang , Jianguo Tang , Zhengqi Wang , Huihui Zhu , Xiaoyuan Yuan , Zhiliang Zhou , Xiongjun Liu , Xiaobin Zhang , Hui Wang , Suihe Jiang , Moon J. Kim , Zhaoping Lu","doi":"10.1016/j.mattod.2024.08.004","DOIUrl":"10.1016/j.mattod.2024.08.004","url":null,"abstract":"<div><div>MAX phases are an emerging kind of material with a unique combination of metallic and ceramic properties, and they have great potential to be utilized as high-temperature components. However, their lack of plastic deformation capability and low strength (particularly at high temperatures) result in unsatisfactory mechanical properties, which restricts their potential applications. In this study, we introduced local chemical fluctuations (LCFs) into atomic packing layers of MAX phases by applying the high-entropy concept learned from the metal community. We substituted Ti in the model Ti<sub>2</sub>AlC MAX phase with Zr, Nb, and Ta and successfully developed a high-entropy MAX phase (TiZr<sub>0.6</sub>NbTa)<sub>2</sub>AlC while preserving its lattice structure. The enhanced LCFs in this new MAX phase created strong lattice strains, increasing the resistance to dislocation slip and then leading to a high compressive yield strength of over 500 MPa even at 1473 K. Also, the LCFs stimulated cross-slips and stacking faults during deformation, effectively alleviating strain localization, promoting uniform deformation, and eventually enhancing plasticity at room temperature and the elevated temperature. Our work not only sheds light on understanding the deformation mechanisms of MAX phases in general, but also offers a valuable route for improving their mechanical properties, making them competitive as the next-generation lightweight high-temperature materials.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 61-73"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Materials TodayPub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.08.022
Mingshen Yu , Botao Liu , Younes Ahmadi , Ki-Hyun Kim
{"title":"Practical strategies to address the moisture barriers in the adsorption of aromatic volatile organic compounds in air","authors":"Mingshen Yu , Botao Liu , Younes Ahmadi , Ki-Hyun Kim","doi":"10.1016/j.mattod.2024.08.022","DOIUrl":"10.1016/j.mattod.2024.08.022","url":null,"abstract":"<div><div>Aromatic volatile organic compounds (AVOCs) are well-known pollutants that exist ubiquitously in both indoor and outdoor environments. Adsorption is yet employed most preferably for the mitigation of AVOCs with multiple merits (e.g., facile operation and low cost) among various technological options developed based on recovery or destruction principles. The adsorption of AVOCs is generally suppressed by the presence of other components like water vapor, while their interactions can also have a positive effect (e.g., in terms of reverse polarities such as between (polar) water and (non or weakly polar) AVOCs). It is thus possible to considerably improve the removal potential (e.g., adsorption capability and selectivity) of sorbents against AVOCs even under wet conditions. In this review, the basic aspects of AVOC adsorption in the presence of water vapor are discussed using benzene and toluene as model compounds. In this context, AVOC removal performance of adsorbents is assessed between wet and dry conditions in terms of adsorption capacity (Q), partition coefficient (PC), and capacity retention (Q<sub>wet</sub>/Q<sub>dry</sub>) after being sorted into three groups (i.e., AC-based, MOF-based, and miscellaneous adsorbents). As a result, a number of adsorbents with suitable pore size, high hydrophobicity, or abundant functional groups (e.g., BUT-55 and AC-MA) are identified to perform well under both dry and humid conditions. This study offers forward-looking insights into the establishment of advanced strategies to design high-performance sorbent materials against AVOCs under real-world humid conditions.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 549-564"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Materials TodayPub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.08.006
Ying Zhang , Liang Liu , Huilan He , Yu Sun , Zhiyuan Zhong
{"title":"Dual and multi-immune activation strategies for emerging cancer immunotherapy","authors":"Ying Zhang , Liang Liu , Huilan He , Yu Sun , Zhiyuan Zhong","doi":"10.1016/j.mattod.2024.08.006","DOIUrl":"10.1016/j.mattod.2024.08.006","url":null,"abstract":"<div><div>Cancer immunotherapy is revolutionizing clinical oncology and prosperously advanced by immune agonists that boost immune stimulation. In recent years, nano-agonists with tunable physicochemical properties have been developed to address the challenges faced by naked immune agonists, such as sub-optimal pharmacokinetics and off-target in vivo accumulation. Notably, due to the potential complementary or synergistic effects between immune agonists targeting distinct signaling pathways, nano-agonists that integrate dual or multiple immune activation modalities show promise in broadening the anti-tumor repertoire and have emerged as a significant topic in cancer immunotherapies. In addition to protecting payloads and facilitating their targeted accumulation, innovative nano-formulations can deliver combinations of immune adjuvant at optimized dosage ratios. To date, dual and multi-immune activation nano-agonists have been extensively explored, demonstrating promising pre-clinical performance in murine tumor models and significant potential for clinical translation. This review provides an overview of dual and multi-immune activation nano-strategies based on targeted signaling pathways and their performance in cancer immunotherapies and discusses the challenges and prospects for clinical translation.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 406-428"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Materials TodayPub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.08.023
Mateen Mirza , Wenjia Du , Lara Rasha , Francesco Iacoviello , Tobias P. Neville , Steven Wilcock , Arfon H. Jones , Rhodri Jervis , Paul R. Shearing , Dan J.L. Brett
{"title":"Following the electrochemical recovery of lithium-ion battery materials from molten salts using operando X-ray imaging","authors":"Mateen Mirza , Wenjia Du , Lara Rasha , Francesco Iacoviello , Tobias P. Neville , Steven Wilcock , Arfon H. Jones , Rhodri Jervis , Paul R. Shearing , Dan J.L. Brett","doi":"10.1016/j.mattod.2024.08.023","DOIUrl":"10.1016/j.mattod.2024.08.023","url":null,"abstract":"<div><div>The creation of a circular economy is seen as one of the key challenges in recycling spent Li-ion batteries and would vastly diminish pressures faced in the initial extraction stage of the life cycle. Molten salts (MS) possess a set of excellent electrochemical properties and have been used to recycle metals and non-metals in the battery, metallurgical, nuclear and planetary science sectors. However, an in-depth and clear visual understanding of the electrochemical reduction process is still lacking. Here, we have overcome this challenge by developing a bespoke, miniaturised electrochemical cell enabling real-time X-ray imaging studies. A combination of X-ray radiography and tomography provide an opportunity to non-destructively reveal detailed microstructural evaluation of the electrochemical cell during the pyro-chemical process. Moreover, we have found that significant amounts of CO/CO<sub>2</sub> accumulated at the anode surface may lead to undesired operational consequences.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 226-239"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Materials TodayPub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.08.021
M. Petrov , D. Canena , N. Kulachenkov , N. Kumar , Pierre Nickmilder , Philippe Leclère , Igor Sokolov
{"title":"Mechanical spectroscopy of materials using atomic force microscopy (AFM-MS)","authors":"M. Petrov , D. Canena , N. Kulachenkov , N. Kumar , Pierre Nickmilder , Philippe Leclère , Igor Sokolov","doi":"10.1016/j.mattod.2024.08.021","DOIUrl":"10.1016/j.mattod.2024.08.021","url":null,"abstract":"<div><div>Here, we present a novel mechano-spectroscopic atomic force microscopy (AFM-MS) technique that overcomes the limitations of current spectroscopic methods by combining the high-resolution imaging capabilities of AFM with machine learning (ML) classification. AFM-MS employs AFM operating in sub-resonance tapping imaging mode, which enables the collection of multiple physical and mechanical property maps of a sample with sub-nanometer lateral resolution in a highly repeatable manner. By comparing these properties to a database of known materials, the technique identifies the location of constituent materials at each image pixel with the assistance of ML algorithms. We demonstrate AFM-MS on various material mixtures, achieving an unprecedented lateral spectroscopic resolution of 1.6 nm. This powerful approach opens new avenues for nanoscale material study, including the material identification and correlation of nanostructure with macroscopic material properties. The ability to map material composition with such high resolution will significantly advance the understanding and design of complex, nanostructured materials.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 218-225"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}