Mechanics of Time-Dependent Materials最新文献

筛选
英文 中文
Analysis of solid lubricating materials microstructures properties in the frame of cylindrical coordinates system and reduced micromorphic model 在圆柱坐标系和还原微形态模型框架下分析固体润滑材料的微观结构特性
IF 2.5 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-09-16 DOI: 10.1007/s11043-024-09734-z
A. R. El-Dhaba, H. K. Awad, S. M. Mousavi
{"title":"Analysis of solid lubricating materials microstructures properties in the frame of cylindrical coordinates system and reduced micromorphic model","authors":"A. R. El-Dhaba, H. K. Awad, S. M. Mousavi","doi":"10.1007/s11043-024-09734-z","DOIUrl":"https://doi.org/10.1007/s11043-024-09734-z","url":null,"abstract":"<p>In this paper, we provide detailed variational formulations for the reduced micromorphic model in rectangular and cylindrical coordinates. In these formulations, the material is modeled as consisting of deformable particles that exhibit microstrain and macroscopic strain fields. This microstrain field is independent of the macroscopic strain field of the entire material. In addition, all the kinematical and kinetical variables, equations of motion, and boundary conditions are formulated depending on the displacement and microstrain fields. Here we define the conditions that give the reduced micromorphic model with decoupled equations of motion such that the displacement field is described as independent of the microstrain field. In addition, we show the applicability of the developed formulation to investigate the simple shear behavior of solid-lubricant cylindrical films. An analytical solution for this model is developed, and numerical results are represented to demonstrate the microstructural topology effects on the mechanics of the lubricant film. The formulations and revealed findings of the present study are important for the design of novel coating architectures materials.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"4 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quadratic regression model for response surface methodology based on sensitivity analysis of heat transport in mono nanofluids with suction and dual stretching in a rectangular frame 基于矩形框架中具有吸力和双重拉伸的单纳米流体热传输灵敏度分析的响应面方法二次回归模型
IF 2.1 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-09-09 DOI: 10.1007/s11043-024-09715-2
Shan Ali Khan, Haihu Liu, Muhammad Imran, Umar Farooq, Sumeira Yasmin, Binjian Ma, Abdullah Alhushaybari
{"title":"Quadratic regression model for response surface methodology based on sensitivity analysis of heat transport in mono nanofluids with suction and dual stretching in a rectangular frame","authors":"Shan Ali Khan,&nbsp;Haihu Liu,&nbsp;Muhammad Imran,&nbsp;Umar Farooq,&nbsp;Sumeira Yasmin,&nbsp;Binjian Ma,&nbsp;Abdullah Alhushaybari","doi":"10.1007/s11043-024-09715-2","DOIUrl":"10.1007/s11043-024-09715-2","url":null,"abstract":"<div><p>The study of fluid flow and heat transfer within a rectangular frame domain has diverse applications across various engineering fields, including energy and power, cooling technology, and nuclear reactors. Motivated by these applications, the current research examines the steady incompressible flow of two different mononanofluids: copper/ethylene glycol–water and titanium dioxide/ethylene glycol–water, within a rectangular frame. The dynamics of the flow, influenced by magnetohydrodynamics (MHD) effects and thermal radiation, are presented. The analysis includes the effects of suction and dual stretching behavior. Additionally, statistical analysis has been conducted to highlight skin-friction characteristics. The dimensionless system of equations has been solved numerically with the help of a numerical shooting scheme. Additionally, experimental design (response surface methodology) and sensitivity are performed for skin frictions. The rheological effects of the relevant parameters against subjective fields are analyzed through graphical representation.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1019 - 1048"},"PeriodicalIF":2.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermomechanical characterisation and plane stress linear viscoelastic modelling of ethylene-tetra-fluoroethylene foils 乙烯-四氟乙烯箔的热力学特性和平面应力线性粘弹性建模
IF 2.5 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-08-28 DOI: 10.1007/s11043-024-09704-5
Alessandro Comitti, Federico Bosi
{"title":"Thermomechanical characterisation and plane stress linear viscoelastic modelling of ethylene-tetra-fluoroethylene foils","authors":"Alessandro Comitti, Federico Bosi","doi":"10.1007/s11043-024-09704-5","DOIUrl":"https://doi.org/10.1007/s11043-024-09704-5","url":null,"abstract":"<p>Ethylene-tetra-fluoroethylene (ETFE) is a polymer employed in tension membrane structures with mechanical properties that strongly depend on time and temperature effects. A comprehensive understanding of the mutual influence of these variables and a unified viscoelastic constitutive model design can enable wider exploitation of ETFE in sustainable lightweight construction. This study presents a thermomechanical characterisation of ETFE foils through quasi-static tensile experiments spanning two orders of magnitude of strain rates, creep, relaxation, shear and dynamic cyclic tests in a wide range of temperatures suitable for building applications, from <span>(-20^{circ }text{ C})</span> to <span>(60^{circ }text{ C})</span>. The experimental results in different material orientations are used to identify the limits of the linear viscoelastic domain, define the direction-dependent creep compliance master curves and calibrate the parameters of a plane stress orthotropic linear viscoelastic model, employing the Boltzmann superposition and the time-temperature superposition principles. The model has been numerically implemented using a recursive integration algorithm and its code is provided open source. A validation on independently acquired data shows the accuracy of the constitutive model in predicting ETFE behaviour within the linear viscoelastic regime usually adopted during structural design, with excellent extrapolation capabilities outside the range of the calibration data.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"96 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite element modelling of ultrasonic assisted hot pressing of metal powder 金属粉末超声波辅助热压的有限元建模
IF 2.5 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-08-27 DOI: 10.1007/s11043-024-09735-y
Rezvan Abedini, Vahid Fartashvand, Amir Abdullah, Yunes Alizadeh
{"title":"Finite element modelling of ultrasonic assisted hot pressing of metal powder","authors":"Rezvan Abedini, Vahid Fartashvand, Amir Abdullah, Yunes Alizadeh","doi":"10.1007/s11043-024-09735-y","DOIUrl":"https://doi.org/10.1007/s11043-024-09735-y","url":null,"abstract":"<p>Ultrasonication has widely been used in many industries to develop advanced materials, improve materials behaviors, and enhance mechanical strength to name a few. The present investigation aims to accelerate the densification mechanisms during the hot-pressing process of Ti-6Al-4 V powder through high power ultrasonication. A computational study has been developed and implemented to simulate the consolidation behavior, then compared with the experimental data to ensure the simulation accuracy. The constitutive equations, encompassing thermoplastic and power-law creep models, were implemented in the simulation as UMAT and CREEP subroutines. Finally, the simulation results in densification curves and density distribution have been compared with the results of experimental tests. The comparison of the simulation and experimental results shows a maximum error of 6.8 and 2.8% in predicting the densification behavior of hot pressing without and with ultrasonication, respectively. The results show the good accuracy of the simulation in predicting final relative density and density distribution with ultrasonic vibrations.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"18 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementation of finite element scheme to study thermal and mass transportation in water-based nanofluid model under quadratic thermal radiation in a disk 实施有限元方案,研究圆盘二次热辐射条件下水基纳米流体模型中的热量和质量传输
IF 2.1 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-08-23 DOI: 10.1007/s11043-024-09736-x
Muhammad Sohail, Kamaleldin Abodayeh, Umar Nazir
{"title":"Implementation of finite element scheme to study thermal and mass transportation in water-based nanofluid model under quadratic thermal radiation in a disk","authors":"Muhammad Sohail,&nbsp;Kamaleldin Abodayeh,&nbsp;Umar Nazir","doi":"10.1007/s11043-024-09736-x","DOIUrl":"10.1007/s11043-024-09736-x","url":null,"abstract":"<div><p>Due to the unlimited usage and involvement of nanoparticles, researchers got much interest in their study. This research discusses the utilization of a hybrid nanofluid model mixed in water-based liquid in a rotating disk. The flow is considered with the involvement of Hall and ion slip effects in a rotating disk. Thermal transport is discussed by engaging quadratic thermal radiation phenomenon along with Joule heating. The boundary layer equations are generated in the form of coupled PDEs and are converted into a set of ODEs by engaging similarity variables. The derived converted ODEs are highly nonlinear and have been solved numerically via the finite element method. The involvement of numerous emerging parameters against velocity, temperature and concentration is plotted and tabulated and their insight physics is discussed in detail. The obtained results confirm the reliability of finite element scheme.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1049 - 1072"},"PeriodicalIF":2.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical analysis of TiO2–Al2O3/water and Ag–MoS2/water hybrid nanofluid flow over a rotating disk with thermal radiation and Cattaneo–Christov heat flux effects 带有热辐射和卡塔尼奥-克里斯托夫热通量效应的旋转圆盘上 TiO2-Al2O3/ 水和 Ag-MoS2/ 水混合纳米流体流动的数值分析
IF 2.1 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-08-19 DOI: 10.1007/s11043-024-09732-1
Nahid Fatima, Ali Basem, Umar Farooq, Muhammad Imran, Madeeha Tahir, Naim Ben Ali, Wajdi Rajhi, Hassan Waqas
{"title":"Numerical analysis of TiO2–Al2O3/water and Ag–MoS2/water hybrid nanofluid flow over a rotating disk with thermal radiation and Cattaneo–Christov heat flux effects","authors":"Nahid Fatima,&nbsp;Ali Basem,&nbsp;Umar Farooq,&nbsp;Muhammad Imran,&nbsp;Madeeha Tahir,&nbsp;Naim Ben Ali,&nbsp;Wajdi Rajhi,&nbsp;Hassan Waqas","doi":"10.1007/s11043-024-09732-1","DOIUrl":"10.1007/s11043-024-09732-1","url":null,"abstract":"<div><p>The study of nanofluids using a stretchy disc has lately gained importance in fluid mechanics. This work investigates the impacts of the Cattaneo-Christov model, heat radiation, and melting events on TiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>/water and Ag–MoS<sub>2</sub>/water hybrid nanofluids over a disc. The results show that hybrid nanofluids greatly increase the thermal conductivity and heat transfer capabilities of base fluids. Water-based hybrid nanofluids are used in military applications such as solar thermal energy, heating pumps, heat exchanger devices, ships, air cleaners, the automotive industry, electric chillers, nuclear-powered systems, turbines, and equipment. To explain the flow of hybrid nanofluids, the two-dimensional nonlinear governing equations, which include the continuity, momentum, and heat transfer rate equations, are expressed in a non-dimensional form. The bvp4c solver firing technique in MATLAB is used to solve these non-dimensional equations and investigate the physical effects of various parameters on velocity and temperature profiles. Increasing the magnetic parameter and nanoparticle volume fraction substantially affects the velocity profile in opposing flow. Greater values of the thermal radiation and heat source-sink parameters result in a greater temperature profile. In addition, raising the thermal relaxation and melting parameters improves the temperature profile. The study’s findings may be utilized in various sectors, including drainage, chemical engineering, solar panels, solar absorption and filtration, groundwater hydrology, solar cells, and other sheet flow applications.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1313 - 1329"},"PeriodicalIF":2.1,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of a geometry-based breathing crack model on a viscoelastic composite rotor-shaft system 基于几何形状的呼吸裂缝模型对粘弹性复合材料转子-轴系统的影响
IF 2.5 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-08-16 DOI: 10.1007/s11043-024-09730-3
S. K. Sutar, K. Ganguly, S. K. Pradhan, R. Pradhan
{"title":"The effect of a geometry-based breathing crack model on a viscoelastic composite rotor-shaft system","authors":"S. K. Sutar, K. Ganguly, S. K. Pradhan, R. Pradhan","doi":"10.1007/s11043-024-09730-3","DOIUrl":"https://doi.org/10.1007/s11043-024-09730-3","url":null,"abstract":"<p>This study investigates the role of a breathing crack on a viscoelastic composite rotor-shaft system supported at the ends by journal bearings. A finite element-based mathematical formulation is developed to model the breathing crack. The geometry of the crack configuration is used to derive a time-dependent stiffness matrix. This matrix is then incorporated into the equation of motion for the composite shaft, derived with the Equivalent Modulus Theory (EMT). The equation of motion is of higher order due to the inclusion of the material’s internal damping behavior, modeled using an operator-based viscoelastic model. Upon validating the mathematical model of the breathing crack, we analyzed its effects over one complete shaft rotation. This analysis further compared the strain energy and orbit plots of the cracked shaft with those of an intact shaft.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"3 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring viscoelastic potential: unsteady magnetohydrodynamic thin film flow of Carreau–Yasuda ternary nanofluid on a rotating disk 探索粘弹性潜能:旋转圆盘上的 Carreau-Yasuda 三元纳米流体的非稳态磁流体薄膜流
IF 2.5 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-08-07 DOI: 10.1007/s11043-024-09733-0
Ahmed Alamer, Amal F. Alharbi, Mounirah Areshi, Muhammad Usman
{"title":"Exploring viscoelastic potential: unsteady magnetohydrodynamic thin film flow of Carreau–Yasuda ternary nanofluid on a rotating disk","authors":"Ahmed Alamer, Amal F. Alharbi, Mounirah Areshi, Muhammad Usman","doi":"10.1007/s11043-024-09733-0","DOIUrl":"https://doi.org/10.1007/s11043-024-09733-0","url":null,"abstract":"<p>This work investigates the problem of time- and space-dependent thin film thickness, specifically focusing on the flow of a Carreau–Yasuda (CY) ternary nanofluid over a porous stretching and rotating disk. The study examines how the thin film thickness varies under partial slip conditions. The CY-ternary nanofluid is composed of silver, alumina, and carborundum nanocombination in ethylene glycol. Also, the study takes into account the effect of thermal radiation with the extension of a magnetic field. To solve the unsteady nonlinear problem, it is transformed into a nonlinear problem and solved using the homotopy analysis method (HAM). The acquired data, together with the CY-ternary nanofluid percentage heat transfer augmentation, are shown visually and quantitatively. The results demonstrate that the CY-ternary nanofluid thin film thickness is influenced by the flow parameters. Moreover, a decrease in thin film thickness is facilitated by rotation, magnetic field, and porosity, which significantly boosts heat transfer rates. These findings are practical applications and offer opportunities for improved thermal management in engineering, biomedical, and industrial processes.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"197 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of mode I fracture toughness of rocks exposed to different environmental conditions using simple and linear multiple regression 利用简单回归和线性多元回归估算暴露于不同环境条件下的岩石的 I 型断裂韧性
IF 2.5 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-08-05 DOI: 10.1007/s11043-024-09731-2
Engin Özdemir, Didem Eren Sarici
{"title":"Estimation of mode I fracture toughness of rocks exposed to different environmental conditions using simple and linear multiple regression","authors":"Engin Özdemir, Didem Eren Sarici","doi":"10.1007/s11043-024-09731-2","DOIUrl":"https://doi.org/10.1007/s11043-024-09731-2","url":null,"abstract":"<p>Mode I fracture toughness (Kıc) is a critical parameter in rock mechanics that is essential for understanding how rocks behave under tensile loading and crucial for applications ranging from safety assessments to structural design in geotechnical engineering. This study comprehensively investigates the influence of various environmental conditions (dry, saturated, frozen, thermal shock and thermal aging) on the physico-mechanical properties and Kıc of rocks. The primary novelty of this study lies in its comprehensive modeling approach under diverse environmental conditions, providing a nuanced understanding of factors influencing rock fracture toughness. By extending analysis to less-studied conditions such as freezing and thermal shock cycles, the study enhances the predictive capacity of fracture toughness models in practical geotechnical applications. Physico-mechanical properties, including uniaxial compressive strength, point load strength, Brazilian tensile strength (BT), Schmidt hardness, and ultrasonic wave velocity were evaluated across different environmental scenarios. Simple and linear multiple regression models were developed using these properties to predict Kıc. Notably, BT emerged as a significant predictor in the simple regression analyzes. Ten linear multiple regression models were formulated using SPSS 20, combining mechanical tests (UCS, BT, PL) with non-destructive testing methods (Vp, Vs, SH), demonstrating robust predictive capabilities with R<sup>2</sup> values exceeding 0.95. Performance metrics (mean absolute error, mean absolute percentage error, root mean square error) were used to verify the accuracy of the model.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"25 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An irreversible process and radial stagnation-point motion of tetra-hybrid nanoparticles on twisting cylinder via finite element analysis 通过有限元分析四杂化纳米粒子在扭曲圆柱体上的不可逆过程和径向停滞点运动
IF 2.1 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-07-25 DOI: 10.1007/s11043-024-09729-w
Muhammad Sohail, Umar Nazir, Ahmed Fouly, Emad Mahrous Awwad, Muhammad Jahangir Khan
{"title":"An irreversible process and radial stagnation-point motion of tetra-hybrid nanoparticles on twisting cylinder via finite element analysis","authors":"Muhammad Sohail,&nbsp;Umar Nazir,&nbsp;Ahmed Fouly,&nbsp;Emad Mahrous Awwad,&nbsp;Muhammad Jahangir Khan","doi":"10.1007/s11043-024-09729-w","DOIUrl":"10.1007/s11043-024-09729-w","url":null,"abstract":"<div><p>Many industrial processes contain the utilization of nanoparticles to improve the thermal performance of the physical systems. This research discusses the utilization of nanoparticles and thermal transport phenomenon in a stretched cylinder. The contribution of convective boundary constraints and thermal radiation is taken in heat transfer-modeled equations with an external heating source. The flow-modeled equations have been derived in Cartesian coordinates in the rotating frame. The set of nonlinear-coupled PDEs (partial differential equations) are obtained for the considered model in the simplified form by engaging boundary layer theory. Afterward, a set of ODEs (ordinary differential equations) was obtained by utilization of similarity transformation. The modeled equations are dealt with numerically via the finite element approach. The solution is displayed graphically against different emerging parameters. It is recorded that the production of the entropy mechanism generated by tetra-hybrid nanofluid is higher than the production of the entropy mechanism generated by ternary hybrid nanofluid.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"737 - 763"},"PeriodicalIF":2.1,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信