Analysis of thermoelastic behavior of porous cylinders with voids via a nonlocal space-time elastic approach and Caputo-tempered fractional heat conduction
IF 2.1 4区 材料科学Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Ahmed E. Abouelregal, Ömer Civalek, Bekir Akgöz, Abdelaziz Foul, Sameh S. Askar
{"title":"Analysis of thermoelastic behavior of porous cylinders with voids via a nonlocal space-time elastic approach and Caputo-tempered fractional heat conduction","authors":"Ahmed E. Abouelregal, Ömer Civalek, Bekir Akgöz, Abdelaziz Foul, Sameh S. Askar","doi":"10.1007/s11043-025-09770-3","DOIUrl":null,"url":null,"abstract":"<div><p>Previous thermoelastic models have struggled to accurately capture the complex behavior of materials under thermal and mechanical loads, particularly with regard to nonlocal effects and memory-dependent behaviors. To address this limitation, a new model has been developed to study the behavior of porous materials with voids, which are critical in engineering applications such as construction, aerospace, and biomedicine. The proposed model is based on the dual-phase lag theory (DPL), which accounts for delays in thermal responses within porous materials, where multiple phases influence thermal conductivity. A key innovation of this research is the integration of spatial and temporal nonlocal effects, which are essential for understanding microscopic interactions in porous materials. Furthermore, the introduction of Caputo-tempered fractional derivatives enhances the modeling of memory effects, providing a more precise understanding of how previous deformations and thermal exposures influence the behavior of these materials. The model has been validated by analyzing the transient response of a porous cylindrical medium subjected to a laser-shaped thermal flow. The effects of nonlocal interactions, phase delays, and fractional parameters on the thermomechanical responses have subsequently been compared and examined. The findings underscored the pivotal role of nonlocal time-length scale parameters in nanomaterial models, highlighting their influence on the reduction of heat transfer efficiency and the attenuation of thermal stresses.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"29 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-025-09770-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Previous thermoelastic models have struggled to accurately capture the complex behavior of materials under thermal and mechanical loads, particularly with regard to nonlocal effects and memory-dependent behaviors. To address this limitation, a new model has been developed to study the behavior of porous materials with voids, which are critical in engineering applications such as construction, aerospace, and biomedicine. The proposed model is based on the dual-phase lag theory (DPL), which accounts for delays in thermal responses within porous materials, where multiple phases influence thermal conductivity. A key innovation of this research is the integration of spatial and temporal nonlocal effects, which are essential for understanding microscopic interactions in porous materials. Furthermore, the introduction of Caputo-tempered fractional derivatives enhances the modeling of memory effects, providing a more precise understanding of how previous deformations and thermal exposures influence the behavior of these materials. The model has been validated by analyzing the transient response of a porous cylindrical medium subjected to a laser-shaped thermal flow. The effects of nonlocal interactions, phase delays, and fractional parameters on the thermomechanical responses have subsequently been compared and examined. The findings underscored the pivotal role of nonlocal time-length scale parameters in nanomaterial models, highlighting their influence on the reduction of heat transfer efficiency and the attenuation of thermal stresses.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.