Sajjad Astaraki, Ehsan Zamani, Mohammad Hossein Pol, Hosein Hasannezhad
{"title":"低速冲击条件下stf填充蜂窝芯芯夹层板与各种蒙皮材料的冲击性能及吸能","authors":"Sajjad Astaraki, Ehsan Zamani, Mohammad Hossein Pol, Hosein Hasannezhad","doi":"10.1007/s11043-025-09776-x","DOIUrl":null,"url":null,"abstract":"<div><p>Sandwich panels with honeycomb cores are widely used for structural applications due to their lightweight and impact-resistant properties. However, improving the energy absorption and crashworthiness of these panels remains a significant challenge, particularly when optimizing core materials and skin configurations. This study examines how different core materials, STF-filled honeycomb, water, resin, and semi-rigid foam, affect the impact performance of sandwich panels at low velocities. Additionally, the influence of different skin materials such as aluminum, epoxy-glass composites, and STF-impregnated fabric is analyzed. The panels were fabricated by filling the honeycomb cores with different materials and applying the skins to the cores. Low-velocity impact tests were conducted at drop heights of 100 mm and 500 mm to evaluate energy absorption, mean crushing force, and specific energy absorption. The results demonstrate that STF-filled cores significantly improve energy absorption and impact resistance compared to traditional core materials. Furthermore, STF-impregnated fabric skins enhance overall panel performance, making STF-filled sandwich panels a promising solution for lightweight, high-strength structures in industries such as automotive and aerospace.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"29 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact performance and energy absorption of sandwich panels with STF-filled honeycomb cores and various skin materials under low-velocity impact conditions\",\"authors\":\"Sajjad Astaraki, Ehsan Zamani, Mohammad Hossein Pol, Hosein Hasannezhad\",\"doi\":\"10.1007/s11043-025-09776-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sandwich panels with honeycomb cores are widely used for structural applications due to their lightweight and impact-resistant properties. However, improving the energy absorption and crashworthiness of these panels remains a significant challenge, particularly when optimizing core materials and skin configurations. This study examines how different core materials, STF-filled honeycomb, water, resin, and semi-rigid foam, affect the impact performance of sandwich panels at low velocities. Additionally, the influence of different skin materials such as aluminum, epoxy-glass composites, and STF-impregnated fabric is analyzed. The panels were fabricated by filling the honeycomb cores with different materials and applying the skins to the cores. Low-velocity impact tests were conducted at drop heights of 100 mm and 500 mm to evaluate energy absorption, mean crushing force, and specific energy absorption. The results demonstrate that STF-filled cores significantly improve energy absorption and impact resistance compared to traditional core materials. Furthermore, STF-impregnated fabric skins enhance overall panel performance, making STF-filled sandwich panels a promising solution for lightweight, high-strength structures in industries such as automotive and aerospace.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":\"29 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-025-09776-x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-025-09776-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Impact performance and energy absorption of sandwich panels with STF-filled honeycomb cores and various skin materials under low-velocity impact conditions
Sandwich panels with honeycomb cores are widely used for structural applications due to their lightweight and impact-resistant properties. However, improving the energy absorption and crashworthiness of these panels remains a significant challenge, particularly when optimizing core materials and skin configurations. This study examines how different core materials, STF-filled honeycomb, water, resin, and semi-rigid foam, affect the impact performance of sandwich panels at low velocities. Additionally, the influence of different skin materials such as aluminum, epoxy-glass composites, and STF-impregnated fabric is analyzed. The panels were fabricated by filling the honeycomb cores with different materials and applying the skins to the cores. Low-velocity impact tests were conducted at drop heights of 100 mm and 500 mm to evaluate energy absorption, mean crushing force, and specific energy absorption. The results demonstrate that STF-filled cores significantly improve energy absorption and impact resistance compared to traditional core materials. Furthermore, STF-impregnated fabric skins enhance overall panel performance, making STF-filled sandwich panels a promising solution for lightweight, high-strength structures in industries such as automotive and aerospace.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.