{"title":"粘塑性模型与分数粘弹性模型对聚合物粘塑性响应模拟效果的比较研究","authors":"Evagelia Kontou","doi":"10.1007/s11043-025-09775-y","DOIUrl":null,"url":null,"abstract":"<div><p>The scope of the present work is to study, experimentally and theoretically, the temperature and strain rate effect on the yielding and postyielding tensile behavior of an epoxy resin. Regarding the theoretical study, a three-dimensional viscoplastic model, namely a Zener B model, associated with the decomposition of the total strain into elastic and viscoplastic part was employed. To have an integrated aspect regarding the various models potentiality, a fractional Zener B viscoelastic model was comparatively utilized. Due to the limited capability of the two well-known models to describe the strain softening, exhibited by the polymeric material, apart from a stress-dependent viscosity related to a nonlinear Eyring-type dashpot, a strain-dependent activation volume was considered to be developed by a distribution function. The strain hardening hereafter was simulated by a back stress, associated with a hyperelastic spring. The strain rate effect could be successfully predicted by the scaling rule valid in viscoelasticity. No essential superior capability simulation was deduced from the comparative study between the two models.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"29 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11043-025-09775-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparative study of the simulation effectiveness of the polymer’s viscoplastic response between a viscoplastic and a fractional viscoelastic model\",\"authors\":\"Evagelia Kontou\",\"doi\":\"10.1007/s11043-025-09775-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The scope of the present work is to study, experimentally and theoretically, the temperature and strain rate effect on the yielding and postyielding tensile behavior of an epoxy resin. Regarding the theoretical study, a three-dimensional viscoplastic model, namely a Zener B model, associated with the decomposition of the total strain into elastic and viscoplastic part was employed. To have an integrated aspect regarding the various models potentiality, a fractional Zener B viscoelastic model was comparatively utilized. Due to the limited capability of the two well-known models to describe the strain softening, exhibited by the polymeric material, apart from a stress-dependent viscosity related to a nonlinear Eyring-type dashpot, a strain-dependent activation volume was considered to be developed by a distribution function. The strain hardening hereafter was simulated by a back stress, associated with a hyperelastic spring. The strain rate effect could be successfully predicted by the scaling rule valid in viscoelasticity. No essential superior capability simulation was deduced from the comparative study between the two models.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":\"29 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11043-025-09775-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-025-09775-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-025-09775-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Comparative study of the simulation effectiveness of the polymer’s viscoplastic response between a viscoplastic and a fractional viscoelastic model
The scope of the present work is to study, experimentally and theoretically, the temperature and strain rate effect on the yielding and postyielding tensile behavior of an epoxy resin. Regarding the theoretical study, a three-dimensional viscoplastic model, namely a Zener B model, associated with the decomposition of the total strain into elastic and viscoplastic part was employed. To have an integrated aspect regarding the various models potentiality, a fractional Zener B viscoelastic model was comparatively utilized. Due to the limited capability of the two well-known models to describe the strain softening, exhibited by the polymeric material, apart from a stress-dependent viscosity related to a nonlinear Eyring-type dashpot, a strain-dependent activation volume was considered to be developed by a distribution function. The strain hardening hereafter was simulated by a back stress, associated with a hyperelastic spring. The strain rate effect could be successfully predicted by the scaling rule valid in viscoelasticity. No essential superior capability simulation was deduced from the comparative study between the two models.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.