基于短通道铁电范德华异质结构的双峰突触。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ankita Ram,Stephane Fusil,Shehr Bano Masood,Neeraj Kumar Rajak,Gaurab Samanta,Mohamed Soliman,Takashi Taniguchi,Kenji Watanabe,Bernard Doudin,Abdelkarim Ouerghi,Alexei Gruverman,Jean-Francois Dayen
{"title":"基于短通道铁电范德华异质结构的双峰突触。","authors":"Ankita Ram,Stephane Fusil,Shehr Bano Masood,Neeraj Kumar Rajak,Gaurab Samanta,Mohamed Soliman,Takashi Taniguchi,Kenji Watanabe,Bernard Doudin,Abdelkarim Ouerghi,Alexei Gruverman,Jean-Francois Dayen","doi":"10.1021/acsami.5c16593","DOIUrl":null,"url":null,"abstract":"The growing demand for energy-efficient and -adaptive computing drives research into neuromorphic architectures. Van der Waals (vdW) ferroelectric field-effect transistors offer nonvolatile polarization control and a highly tunable semiconductor channel, enabling multilevel states and making them promising for brain-inspired electronics. Here, we present a reconfigurable bimodal ferroelectric synapse based on the CuInP2S6/hBN/WSe2 vdW heterostructure, extending beyond conventional single-modal synaptic devices by introducing added functionality. Transport measurements and piezoresponse force microscopy reveal precise electrical control over the ferroelectric domain landscape, enabling continuous tuning of WSe2 channel conductance and its threshold voltage. Crucially, the ambipolar nature of WSe2 allows for real-time switching between excitatory and inhibitory synaptic behaviors, mimicking multimodal neurotransmission observed in the human brain. Moreover, the bimodal synapse is demonstrated at channel lengths down to 50 nm, venturing into previously uncharted territory for ferroelectric vdW synapses. Neural network simulations incorporating our device show excellent learning performance for both synaptic modes, highlighting its potential for next-generation neuromorphic computing. This work expands the functional and scaling capabilities of vdW ferroelectric technology, highlighting its potential for next-generation artificial intelligence electronics.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"105 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi-Modal Synapse Based on a Short-Channel Ferroelectric van der Waals Heterostructure.\",\"authors\":\"Ankita Ram,Stephane Fusil,Shehr Bano Masood,Neeraj Kumar Rajak,Gaurab Samanta,Mohamed Soliman,Takashi Taniguchi,Kenji Watanabe,Bernard Doudin,Abdelkarim Ouerghi,Alexei Gruverman,Jean-Francois Dayen\",\"doi\":\"10.1021/acsami.5c16593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing demand for energy-efficient and -adaptive computing drives research into neuromorphic architectures. Van der Waals (vdW) ferroelectric field-effect transistors offer nonvolatile polarization control and a highly tunable semiconductor channel, enabling multilevel states and making them promising for brain-inspired electronics. Here, we present a reconfigurable bimodal ferroelectric synapse based on the CuInP2S6/hBN/WSe2 vdW heterostructure, extending beyond conventional single-modal synaptic devices by introducing added functionality. Transport measurements and piezoresponse force microscopy reveal precise electrical control over the ferroelectric domain landscape, enabling continuous tuning of WSe2 channel conductance and its threshold voltage. Crucially, the ambipolar nature of WSe2 allows for real-time switching between excitatory and inhibitory synaptic behaviors, mimicking multimodal neurotransmission observed in the human brain. Moreover, the bimodal synapse is demonstrated at channel lengths down to 50 nm, venturing into previously uncharted territory for ferroelectric vdW synapses. Neural network simulations incorporating our device show excellent learning performance for both synaptic modes, highlighting its potential for next-generation neuromorphic computing. This work expands the functional and scaling capabilities of vdW ferroelectric technology, highlighting its potential for next-generation artificial intelligence electronics.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c16593\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c16593","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对节能和自适应计算日益增长的需求推动了对神经形态架构的研究。范德华(vdW)铁电场效应晶体管提供非易失性极化控制和高度可调的半导体通道,使其能够实现多能级状态,并使其有望用于大脑启发电子产品。在这里,我们提出了一个基于CuInP2S6/hBN/WSe2 vdW异质结构的可重构双峰铁电突触,通过引入额外的功能扩展了传统的单峰突触装置。输运测量和压响应力显微镜揭示了对铁电畴景观的精确电气控制,使WSe2通道电导及其阈值电压能够连续调谐。至关重要的是,WSe2的双极性特性允许在兴奋性和抑制性突触行为之间实时切换,模仿人类大脑中观察到的多模态神经传递。此外,在通道长度低至50纳米的情况下,双峰突触被证明是冒险进入铁电vdW突触的未知领域。结合我们的设备的神经网络模拟在两种突触模式下都显示出出色的学习性能,突出了其在下一代神经形态计算中的潜力。这项工作扩展了vdW铁电技术的功能和缩放能力,突出了其在下一代人工智能电子产品中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bi-Modal Synapse Based on a Short-Channel Ferroelectric van der Waals Heterostructure.
The growing demand for energy-efficient and -adaptive computing drives research into neuromorphic architectures. Van der Waals (vdW) ferroelectric field-effect transistors offer nonvolatile polarization control and a highly tunable semiconductor channel, enabling multilevel states and making them promising for brain-inspired electronics. Here, we present a reconfigurable bimodal ferroelectric synapse based on the CuInP2S6/hBN/WSe2 vdW heterostructure, extending beyond conventional single-modal synaptic devices by introducing added functionality. Transport measurements and piezoresponse force microscopy reveal precise electrical control over the ferroelectric domain landscape, enabling continuous tuning of WSe2 channel conductance and its threshold voltage. Crucially, the ambipolar nature of WSe2 allows for real-time switching between excitatory and inhibitory synaptic behaviors, mimicking multimodal neurotransmission observed in the human brain. Moreover, the bimodal synapse is demonstrated at channel lengths down to 50 nm, venturing into previously uncharted territory for ferroelectric vdW synapses. Neural network simulations incorporating our device show excellent learning performance for both synaptic modes, highlighting its potential for next-generation neuromorphic computing. This work expands the functional and scaling capabilities of vdW ferroelectric technology, highlighting its potential for next-generation artificial intelligence electronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信