Corrosion Science最新文献

筛选
英文 中文
Pore defect and corrosion behavior of HVAF-sprayed Co21Fe14Ni8Cr16Mo16C15B10 high entropy metallic glass coatings HVAF 喷射 Co21Fe14Ni8Cr16Mo16C15B10 高熵金属玻璃涂层的孔隙缺陷和腐蚀行为
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-11-14 DOI: 10.1016/j.corsci.2024.112564
Yunyun Ge , Jiangbo Cheng , Lin Xue , Baosen Zhang , Sheng Hong , Xiubing Liang , Shaogang Wang , Xiancheng Zhang
{"title":"Pore defect and corrosion behavior of HVAF-sprayed Co21Fe14Ni8Cr16Mo16C15B10 high entropy metallic glass coatings","authors":"Yunyun Ge ,&nbsp;Jiangbo Cheng ,&nbsp;Lin Xue ,&nbsp;Baosen Zhang ,&nbsp;Sheng Hong ,&nbsp;Xiubing Liang ,&nbsp;Shaogang Wang ,&nbsp;Xiancheng Zhang","doi":"10.1016/j.corsci.2024.112564","DOIUrl":"10.1016/j.corsci.2024.112564","url":null,"abstract":"<div><div>Pore defect is a primary bottleneck limiting corrosion resistance of the coatings. The relationship between porosity and corrosion behaviors of HVAF-sprayed Co<sub>21</sub>Fe<sub>14</sub>Ni<sub>8</sub>Cr<sub>16</sub>Mo<sub>16</sub>C<sub>15</sub>B<sub>10</sub> high entropy metallic glass (HE-MG) coatings was investigated by 3D XRT, XPS, SKPFM and SVET techniques. The potential difference between pores and surrounding regions expedites corrosion tendency. The corrosion current density of the coating and concentration of defects in passivation film increase as a function of porosity, thereby degrading corrosion resistance. The lowest porosity coating displays exceptional anti-corrosion due to compact films enriched with Cr<sub>2</sub>O<sub>3</sub> and Mo<sup>4+</sup> oxides. These findings provide valuable insights for designing corrosion-resistance coatings.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"242 ","pages":"Article 112564"},"PeriodicalIF":7.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of compressive stress on the corrosion behavior of biodegradable zinc with tension-compression asymmetry under simulated physiological environment 压缩应力对模拟生理环境下拉伸-压缩不对称生物降解锌腐蚀行为的影响
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-11-14 DOI: 10.1016/j.corsci.2024.112566
Lu Zhang , Xin Zhang , Jianwei Dai , Juyi Yang , Zijian Huang , Zhihai Huang , Chao Guo , Jing Bai , Feng Xue , Linyuan Han , Chenglin Chu
{"title":"Effects of compressive stress on the corrosion behavior of biodegradable zinc with tension-compression asymmetry under simulated physiological environment","authors":"Lu Zhang ,&nbsp;Xin Zhang ,&nbsp;Jianwei Dai ,&nbsp;Juyi Yang ,&nbsp;Zijian Huang ,&nbsp;Zhihai Huang ,&nbsp;Chao Guo ,&nbsp;Jing Bai ,&nbsp;Feng Xue ,&nbsp;Linyuan Han ,&nbsp;Chenglin Chu","doi":"10.1016/j.corsci.2024.112566","DOIUrl":"10.1016/j.corsci.2024.112566","url":null,"abstract":"<div><div>Biodegradable Zn vascular stents are compressed by the vessel wall while maintaining blood flow, which may lead to unpredictable deterioration of the stent due to stress corrosion. This work investigated the mechanical and corrosion behavior of Zn in a coupled environment of compressive stress and artificial plasma. The corrosion rate of Zn increases as compressive stress rises. However, the acceleration effect gradually decreased in contrast to our previous work on tensile stresses, which can be attributed to the tension-compression asymmetry of Zn-metal. Meanwhile, the corrosion mechanism of Zn was compared, and numerical models for stresses and corrosion rates were established.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"242 ","pages":"Article 112566"},"PeriodicalIF":7.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wet oxidation of amorphous and crystalline Cu–Zr alloys probed by thermodynamic, kinetic, and instrumental analyses 通过热力学、动力学和仪器分析探究无定形和结晶铜锌合金的湿氧化过程
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-11-13 DOI: 10.1016/j.corsci.2024.112565
Shuo Ma, Panmei Liu, Yongchang Liu, Zumin Wang
{"title":"Wet oxidation of amorphous and crystalline Cu–Zr alloys probed by thermodynamic, kinetic, and instrumental analyses","authors":"Shuo Ma,&nbsp;Panmei Liu,&nbsp;Yongchang Liu,&nbsp;Zumin Wang","doi":"10.1016/j.corsci.2024.112565","DOIUrl":"10.1016/j.corsci.2024.112565","url":null,"abstract":"<div><div>The effect of water vapor on oxidation behaviors of amorphous and crystalline Cu-Zr alloys has been comprehensively investigated. Compared with dry oxidation, water vapor retards the oxidation of amorphous Cu-Zr alloy by lowering internal ionic diffusion and leading to the formation of stable crystalline oxide layers. In contrast, water vapor accelerates the oxidation of crystalline Cu-Zr alloy 10 times by enhancing the activity and outward diffusion of Cu and promoting an unexpected synchronous oxidation of Zr and Cu. This study would change the perspective from focusing exclusively on the detrimental effect of water to considering its suppression on surface oxidation.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"242 ","pages":"Article 112565"},"PeriodicalIF":7.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of ultrasonic-assisted abrasive peening on near-surface characteristics and electrochemical behaviour of Al-6061 alloy 超声波辅助喷丸强化对 Al-6061 合金近表面特性和电化学行为的影响
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-11-10 DOI: 10.1016/j.corsci.2024.112563
S V V N Siva Rao , Darothi Bairagi , Sumantra Mandal , N.D. Chakladar , Soumitra Paul
{"title":"Effect of ultrasonic-assisted abrasive peening on near-surface characteristics and electrochemical behaviour of Al-6061 alloy","authors":"S V V N Siva Rao ,&nbsp;Darothi Bairagi ,&nbsp;Sumantra Mandal ,&nbsp;N.D. Chakladar ,&nbsp;Soumitra Paul","doi":"10.1016/j.corsci.2024.112563","DOIUrl":"10.1016/j.corsci.2024.112563","url":null,"abstract":"<div><div>This study investigates the influence of ultrasonic-assisted abrasive peening (UAP) on the microstructural evolution and corrosion characteristics of Al-6061 alloy. A 3 min peened sample demonstrated a 50 % reduction in grain size and a 14-fold increase in residual stress compared to its unpeened state. The corrosion rate for the 3 min peening also decreased to 9.42 × 10<sup>−3</sup> mm/year, compared to 89.4 × 10<sup>−3</sup> mm/year for the unpeened alloy specimen. Peening beyond 3 min was observed to be susceptible to pitting. Hence, the UAP is found to be an effective method of improving the corrosion resistance of Al-6061.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"242 ","pages":"Article 112563"},"PeriodicalIF":7.4,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrosion behavior of high manganese steel by iron-oxidizing bacteria in wastewater at the bottom of liquefied natural gas storage tanks 液化天然气储罐底部废水中的铁氧化细菌对高锰钢的腐蚀行为
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-11-09 DOI: 10.1016/j.corsci.2024.112561
Yunqing Xiong , Zixuan Xu , Tiansui Zhang , Guangfang Li , Zhuo Huang , Yi Fan , Hongfang Liu
{"title":"Corrosion behavior of high manganese steel by iron-oxidizing bacteria in wastewater at the bottom of liquefied natural gas storage tanks","authors":"Yunqing Xiong ,&nbsp;Zixuan Xu ,&nbsp;Tiansui Zhang ,&nbsp;Guangfang Li ,&nbsp;Zhuo Huang ,&nbsp;Yi Fan ,&nbsp;Hongfang Liu","doi":"10.1016/j.corsci.2024.112561","DOIUrl":"10.1016/j.corsci.2024.112561","url":null,"abstract":"<div><div>High manganese steel is a new generation of material for the fabrication of liquefied natural gas (LNG) storage tanks. The corrosion behavior of high manganese steel induced by iron-oxidizing bacteria (IOB) living in wastewater from LNG tanks bottom was investigated. The results revealed that IOB can induce a generation of a dense and thick biotransformation film on the steel. Interestingly, the biotransformation film could be able to reduce the corrosion rate of high manganese steel by 71 % and alleviate the formation of corrosion pits. A corrosion inhibition mechanism is postulated, elucidating the protective role of the iron-manganese oxide composite biofilm.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"242 ","pages":"Article 112561"},"PeriodicalIF":7.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Insights into the high-sulphur aging of sintered silver nanoparticles: An experimental and ReaxFF study” [Corros. Sci. 192 (2021) 109846] 烧结银纳米颗粒的高硫老化透视:一项实验和 ReaxFF 研究" [Corros.
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-11-09 DOI: 10.1016/j.corsci.2024.112552
Dong Hu , Tijian Gu , Zhen Cui , Sten Vollebregt , Xuejun Fan , Guoqi Zhang , Jiajie Fan
{"title":"Corrigendum to “Insights into the high-sulphur aging of sintered silver nanoparticles: An experimental and ReaxFF study” [Corros. Sci. 192 (2021) 109846]","authors":"Dong Hu ,&nbsp;Tijian Gu ,&nbsp;Zhen Cui ,&nbsp;Sten Vollebregt ,&nbsp;Xuejun Fan ,&nbsp;Guoqi Zhang ,&nbsp;Jiajie Fan","doi":"10.1016/j.corsci.2024.112552","DOIUrl":"10.1016/j.corsci.2024.112552","url":null,"abstract":"","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"241 ","pages":"Article 112552"},"PeriodicalIF":7.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen-induced crack behavior of a precipitation-strengthened Ni50Cr20Co15Al10V5 high entropy alloy 沉淀强化 Ni50Cr20Co15Al10V5 高熵合金的氢致裂纹行为
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-11-08 DOI: 10.1016/j.corsci.2024.112562
Qiancheng Zhao , Hong Luo , Milos B. Djukic , Zhimin Pan , Hongxu Cheng , R.K. Islamgaliev
{"title":"Hydrogen-induced crack behavior of a precipitation-strengthened Ni50Cr20Co15Al10V5 high entropy alloy","authors":"Qiancheng Zhao ,&nbsp;Hong Luo ,&nbsp;Milos B. Djukic ,&nbsp;Zhimin Pan ,&nbsp;Hongxu Cheng ,&nbsp;R.K. Islamgaliev","doi":"10.1016/j.corsci.2024.112562","DOIUrl":"10.1016/j.corsci.2024.112562","url":null,"abstract":"<div><div>The hydrogen-induced cracking behavior and mechanism of an L1<sub>2</sub>-strengthened Ni<sub>50</sub>Cr<sub>20</sub>Co<sub>15</sub>Al<sub>10</sub>V<sub>5</sub> high entropy alloy was evaluated using the tensile test after hydrogen charging. The microstructures and hydrogen-induced cracks were characterized by electron backscatter diffraction and electron channeling contrast imaging methods. The results revealed that hydrogen decreased the strain hardening rate and induced pronounced cracks, leading to significant degradation in elongation. After deformation, the local strain was concentrated in the precipitate-matrix interfaces. The precipitate-matrix boundary and the interior of precipitates were prone to hydrogen embrittlement, where hydrogen-induced cracks tended to propagate, attributing to the hydrogen-enhanced decohesion mechanism.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"241 ","pages":"Article 112562"},"PeriodicalIF":7.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure, mechanical behavior, and cavitation erosion-corrosion resistance of the BCC/B2 strengthened FeNiCrMoAl-based multi-principal element alloys BCC/B2 强化铁镍铬钼铝基多主元素合金的微观结构、力学行为和抗气蚀腐蚀性能
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-11-06 DOI: 10.1016/j.corsci.2024.112560
Jiacheng Niu , Chenliang Chu , Qiang Chen , Guoliang Hou , Weiping Chen , Tiwen Lu , Ning Yao , Haobo Cao , Zhiqiang Fu
{"title":"Microstructure, mechanical behavior, and cavitation erosion-corrosion resistance of the BCC/B2 strengthened FeNiCrMoAl-based multi-principal element alloys","authors":"Jiacheng Niu ,&nbsp;Chenliang Chu ,&nbsp;Qiang Chen ,&nbsp;Guoliang Hou ,&nbsp;Weiping Chen ,&nbsp;Tiwen Lu ,&nbsp;Ning Yao ,&nbsp;Haobo Cao ,&nbsp;Zhiqiang Fu","doi":"10.1016/j.corsci.2024.112560","DOIUrl":"10.1016/j.corsci.2024.112560","url":null,"abstract":"<div><div>The influence of disordered and ordered body-centered cubic (BCC-β and B2-β′) secondary phases on the mechanical properties and cavitation erosion-corrosion (CE-C) behavior of BCC/B2 strengthened FeNiCrMoAl-based multi-principal element alloy (MPEA) was systematically investigated. An increased β/β′ phases content enhanced the MPEAs’ strengths while maintaining good ductility. However, this increases also led to a higher proportion of loosely bound Al<sub>2</sub>O<sub>3</sub> within the passivation film, resulting in a slight reduction in electrochemical corrosion performance. Remarkably, in a NaCl solution, the increased β/β′ phases significantly improved the MPEAs’ resistance to CE-C, attributed to the outstanding corrosion resistance and mechanical properties which could withstand elastic strain damage and plastic deformation.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"241 ","pages":"Article 112560"},"PeriodicalIF":7.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insight into the mechanism of abnormal degradation of duplex U-Nb alloy 揭示双相铀铌合金异常降解的机理
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-11-06 DOI: 10.1016/j.corsci.2024.112559
Licheng Chen, Yawen Zhao, Xianglin Chen, Hefei Ji, Bin Su, Piheng Chen, Xiaolin Wang
{"title":"Insight into the mechanism of abnormal degradation of duplex U-Nb alloy","authors":"Licheng Chen,&nbsp;Yawen Zhao,&nbsp;Xianglin Chen,&nbsp;Hefei Ji,&nbsp;Bin Su,&nbsp;Piheng Chen,&nbsp;Xiaolin Wang","doi":"10.1016/j.corsci.2024.112559","DOIUrl":"10.1016/j.corsci.2024.112559","url":null,"abstract":"<div><div>Niobium is introduced to uranium to enhance the corrosion resistance of metallic uranium, while duplex U-Nb alloy exhibits anomalous degradation to hydrogen corrosion. To understand the underlying mechanism, we employed high-resolution transmission electron microscopy (HRTEM) and density functional theory (DFT) calculations to characterize the structure of the phase interface in duplex U-Nb alloy and its interaction with hydrogen and vacancy. Combined with the different behaviors of hydrogen in the two phases of the duplex U-Nb alloy, a mechanism contributing to the observed abnormal degradation is proposed, corroborated by the special distribution of hydride within the duplex U-Nb alloy.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"242 ","pages":"Article 112559"},"PeriodicalIF":7.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An empirical model of the kinetics of hydrogen-induced cracking in pipeline steel, using statistical distribution models and considering microstructural characteristics and hydrogen diffusion parameters 使用统计分布模型并考虑微结构特征和氢扩散参数的管道钢氢致开裂动力学经验模型
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-11-05 DOI: 10.1016/j.corsci.2024.112556
Ehsan Entezari , Jorge Luis González Velázquez , Hojjat Sabzali , Jerzy Szpunar
{"title":"An empirical model of the kinetics of hydrogen-induced cracking in pipeline steel, using statistical distribution models and considering microstructural characteristics and hydrogen diffusion parameters","authors":"Ehsan Entezari ,&nbsp;Jorge Luis González Velázquez ,&nbsp;Hojjat Sabzali ,&nbsp;Jerzy Szpunar","doi":"10.1016/j.corsci.2024.112556","DOIUrl":"10.1016/j.corsci.2024.112556","url":null,"abstract":"<div><div>This study proposes an empirical model to predict the kinetics of hydrogen-induced cracking (HIC) growth rate in pipeline steels based on experimentally measured hydrogen diffusion parameters and spatial distribution of microstructural features previously identified to have a role on HIC kinetics. In the experimental work, the HIC was induced by electrochemical cathodic charging and the crack growth was monitored by ultrasonic inspection. Optical and scanning electron microscopy were used to determine the spatial distribution parameters of non-metallic inclusions, and the ferrite grain and second phase characteristics. The hydrogen microprint technique used to visualize hydrogen diffusion path in the microstructure and the hydrogen diffusion parameters were determined by hydrogen permeation tests. Results show that NMI shape affects HIC nucleation sites, using student's t-distribution, while ferrite grain characteristics affect HIC growth rates, with X70–2 and X56 steel plates recorded highest HIC growth rate. The Log-Normal distribution model, supported by statistical analysis, effectively predicts HIC growth rates compared with Weibull and Gamma distribution models.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"241 ","pages":"Article 112556"},"PeriodicalIF":7.4,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信