Corrosion Science最新文献

筛选
英文 中文
Determining the microstructure effects on the stress corrosion cracking initiation behavior of laser powder-bed-fusion printed 304L stainless steel in high-temperature hydrogenated water 确定微观结构对高温氢化水中激光粉末床熔融印刷 304L 不锈钢应力腐蚀开裂起始行为的影响
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-09-27 DOI: 10.1016/j.corsci.2024.112482
Shihao Zhang , Shengkai Wang , Juan Hou , Wei Wang , Jiang Li , En-Hou Han , Wenjun Kuang
{"title":"Determining the microstructure effects on the stress corrosion cracking initiation behavior of laser powder-bed-fusion printed 304L stainless steel in high-temperature hydrogenated water","authors":"Shihao Zhang ,&nbsp;Shengkai Wang ,&nbsp;Juan Hou ,&nbsp;Wei Wang ,&nbsp;Jiang Li ,&nbsp;En-Hou Han ,&nbsp;Wenjun Kuang","doi":"10.1016/j.corsci.2024.112482","DOIUrl":"10.1016/j.corsci.2024.112482","url":null,"abstract":"<div><div>This study investigated the microstructure effects on the stress corrosion cracking (SCC) initiation behavior of laser powder-bed-fusion (L-PBF) printed 304 L stainless steel in high-temperature hydrogenated water. The dislocation cells facilitate Cr transportation, thereby mitigating intergranular oxidation and SCC initiation. Compared to the warm-rolled dislocation cells, as-printed dislocation cells result in reduced strain localization, which is beneficial for suppressing SCC initiation. This is because the as-printed dislocation cells are stable and composed of abundant screw dislocations. Micro-inclusions can lead to nodular corrosion, thus increasing the depth of intergranular oxidation and promoting SCC initiation.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"240 ","pages":"Article 112482"},"PeriodicalIF":7.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effects of Pt and Y addition in (Ni, Pt)CrAlY bond coat on oxide spallation resistance and growth of interdiffusion zone between bond coat and Ni-based single crystal superalloy 在(镍、铂)CrAlY 键合涂层中添加铂和钇对氧化物抗剥落性以及键合涂层与镍基单晶超合金之间互渗区生长的协同效应
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-09-27 DOI: 10.1016/j.corsci.2024.112485
Ujjval Bansal , Neelamegan Esakkiraja , Thangaraj Baskaran , Tanaji Paul , Raju Ravi , Praveen Kumar , Vikram Jayaram , Aloke Paul
{"title":"Synergistic effects of Pt and Y addition in (Ni, Pt)CrAlY bond coat on oxide spallation resistance and growth of interdiffusion zone between bond coat and Ni-based single crystal superalloy","authors":"Ujjval Bansal ,&nbsp;Neelamegan Esakkiraja ,&nbsp;Thangaraj Baskaran ,&nbsp;Tanaji Paul ,&nbsp;Raju Ravi ,&nbsp;Praveen Kumar ,&nbsp;Vikram Jayaram ,&nbsp;Aloke Paul","doi":"10.1016/j.corsci.2024.112485","DOIUrl":"10.1016/j.corsci.2024.112485","url":null,"abstract":"<div><div>This study shows the beneficial effect of Pt addition to the (β+γ)-NiCrAlY coating. Adding Y in NiCrAl increases oxide growth kinetics but improves spallation resistance. Pt with Y does not change the oxidation rate compared to only adding Y but significantly reduces spallation when cooled to room temperature. Continuous layers of Al<sub>2</sub>O<sub>3</sub> and Cr<sub>2</sub>O<sub>3</sub>, along with other oxides such as YAlO<sub>3</sub>, NiCr<sub>2</sub>O<sub>4</sub>, and NiAl<sub>2</sub>O<sub>4,</sub> are observed. Moreover, Pt addition reduces the thickness of the interdiffusion zone where Al goes through an uphill diffusion profile, minimizing Al loss and significantly decreasing the growth of deleterious TCP phases.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"240 ","pages":"Article 112485"},"PeriodicalIF":7.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of microstructure of an advanced duplex stainless steel on the pitting corrosion and chloride-induced stress corrosion cracking resistance 高级双相不锈钢微观结构对抗点蚀和氯化物应力腐蚀开裂性能的影响
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-09-27 DOI: 10.1016/j.corsci.2024.112489
Chaewon Jeong , Byeong Seo Kong , Junjie Chen , Qian Xiao , Changheui Jang
{"title":"The effect of microstructure of an advanced duplex stainless steel on the pitting corrosion and chloride-induced stress corrosion cracking resistance","authors":"Chaewon Jeong ,&nbsp;Byeong Seo Kong ,&nbsp;Junjie Chen ,&nbsp;Qian Xiao ,&nbsp;Changheui Jang","doi":"10.1016/j.corsci.2024.112489","DOIUrl":"10.1016/j.corsci.2024.112489","url":null,"abstract":"<div><div>The effect of austenite morphology on the corrosion resistance of a newly-developed advanced duplex stainless steel (ADCS) was evaluated by electrochemical and chloride-induced stress corrosion cracking (CISCC) tests. By properly controlling heat treatment conditions, equiaxed (EQ) and elongated (EL) austenites were formed in ferrite matrix. ADCS-EQ exhibited higher pitting potential than ADCS-EL, primarily owing to less phase boundary. Meanwhile, ADCS-EL showed better CISCC resistance than ADCS-EQ, as the elongated austenite inhibited selective dissolution. Overall, the CISCC resistance of ADCS was more affected by austenite morphology and orientation, and would not be in accordance with pitting corrosion resistance.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"240 ","pages":"Article 112489"},"PeriodicalIF":7.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the SCC behavior and enhanced creep strength mechanism of AFA alloy in supercritical CO2 揭示 AFA 合金在超临界 CO2 中的 SCC 行为和蠕变强度增强机理
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-09-27 DOI: 10.1016/j.corsci.2024.112488
Ming Shu , Shuo Cong , Qin Zhou , Xianglong Guo , Qiyin Zhou , Yongduo Sun , Songling Wu
{"title":"Unraveling the SCC behavior and enhanced creep strength mechanism of AFA alloy in supercritical CO2","authors":"Ming Shu ,&nbsp;Shuo Cong ,&nbsp;Qin Zhou ,&nbsp;Xianglong Guo ,&nbsp;Qiyin Zhou ,&nbsp;Yongduo Sun ,&nbsp;Songling Wu","doi":"10.1016/j.corsci.2024.112488","DOIUrl":"10.1016/j.corsci.2024.112488","url":null,"abstract":"<div><div>The oxide scale of 20Cr25Ni2.5Al AFA alloy formed under the coupling of stress and supercritical carbon dioxide (sCO<sub>2</sub>, 650 ℃ / 15 MPa) consisted of Fe<sub>3</sub>O<sub>4</sub>, Cr<sub>2</sub>O<sub>3</sub>, preferential intergranular oxidation zones, but lacked a thin Al<sub>2</sub>O<sub>3</sub> protective layer. The poor oxidation resistance resulted in significant CO<sub>2</sub> penetration into the matrix and subsequent formation of Cr<sub>2</sub>O<sub>3</sub>, thereby hindering the initiation of Cr - rich σ phase beneath the oxide scale. This competition between oxidation and precipitation effectively reduced crack initiation and delayed the connection between SCC and creep cracks, thus significantly prolonging the creep lifetime in sCO<sub>2</sub> compared to that in air.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"240 ","pages":"Article 112488"},"PeriodicalIF":7.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rare earth addition powered corrosion resistance of the surface oxide film on GCr15 bearing steel substrate 稀土添加物为 GCr15 承载钢基体表面氧化膜的耐腐蚀性提供动力
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-09-27 DOI: 10.1016/j.corsci.2024.112490
Chuang Qiao , Hongyang Zhang , Fengjing Wu , Shuzhen Qiao , Chunli Dai , Xian Zhang , Meng Sun , Bo-Kai Liao , Yong Shen , Long Hao , Yunxiang Chen , Jianqiu Wang , Wei Ke
{"title":"Rare earth addition powered corrosion resistance of the surface oxide film on GCr15 bearing steel substrate","authors":"Chuang Qiao ,&nbsp;Hongyang Zhang ,&nbsp;Fengjing Wu ,&nbsp;Shuzhen Qiao ,&nbsp;Chunli Dai ,&nbsp;Xian Zhang ,&nbsp;Meng Sun ,&nbsp;Bo-Kai Liao ,&nbsp;Yong Shen ,&nbsp;Long Hao ,&nbsp;Yunxiang Chen ,&nbsp;Jianqiu Wang ,&nbsp;Wei Ke","doi":"10.1016/j.corsci.2024.112490","DOIUrl":"10.1016/j.corsci.2024.112490","url":null,"abstract":"<div><div>Rare earth (RE) has been demonstrated to have a series of positive effects on performance of bearing steel. In this study, we propose a new mechanism that RE element can enhance the corrosion resistance of bearing steel under atmospheric condition by promoting the formation of a thicker surface oxide film with a greater thickness in the inner protective layer which consists of Fe<sub>3</sub>O<sub>4</sub> and Cr<sub>2</sub>O<sub>3</sub>. Such an evolution is primarily associated with the dissolved RE element in steel matrix. Besides, EIS data regression can provide a way to quantify the corrosion resistance evolution in surface oxide film on steel substrates.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"240 ","pages":"Article 112490"},"PeriodicalIF":7.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New insights into oxidation and creep characteristics of T91 heat-resistant steel in martensitic and ferritic states 马氏体和铁素体状态下 T91 耐热钢氧化和蠕变特性的新见解
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-09-27 DOI: 10.1016/j.corsci.2024.112487
Hongjun Li , Ming Huang , Yuan Qin , Lin Hong , Sen Yang
{"title":"New insights into oxidation and creep characteristics of T91 heat-resistant steel in martensitic and ferritic states","authors":"Hongjun Li ,&nbsp;Ming Huang ,&nbsp;Yuan Qin ,&nbsp;Lin Hong ,&nbsp;Sen Yang","doi":"10.1016/j.corsci.2024.112487","DOIUrl":"10.1016/j.corsci.2024.112487","url":null,"abstract":"<div><div>This study systematically compared the oxidation and creep characteristics of T91 steel in both martensitic and ferritic states. Findings indicate the formation of mixed oxides, including Fe<sub>3</sub>O<sub>4</sub>, (Cr, Mn)<sub>2</sub>O<sub>3</sub>, and MnCr<sub>2</sub>O<sub>4</sub>, during the oxidation process. In the ferritic specimens, the oxygen diffusion channel is restricted due to the transition of M<sub>23</sub>C<sub>6</sub> carbide. Moreover, the ferritic steel exhibits poor creep life, and a strong α fibre texture was observed. For T91 steel, appropriate thermomechanical treatment can lead to uniform distribution of M<sub>23</sub>C<sub>6</sub> carbides within the matrix, achieving the optimal precipitation strengthening effect and resulting in improved high-temperature properties.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"240 ","pages":"Article 112487"},"PeriodicalIF":7.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrosion resistance enhancement for 6Mo austenitic stainless steel through B alloying coupled with a simple pre-aging method 通过 B 合金和简单的预时效方法提高 6Mo 奥氏体不锈钢的耐腐蚀性能
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-09-26 DOI: 10.1016/j.corsci.2024.112481
Jinyao Ma , Shucai Zhang , Huabing Li , Huanyu Tan , Hao Feng , Puli Wang , Yi Zhang , Peide Han , Zhihua Wang
{"title":"Corrosion resistance enhancement for 6Mo austenitic stainless steel through B alloying coupled with a simple pre-aging method","authors":"Jinyao Ma ,&nbsp;Shucai Zhang ,&nbsp;Huabing Li ,&nbsp;Huanyu Tan ,&nbsp;Hao Feng ,&nbsp;Puli Wang ,&nbsp;Yi Zhang ,&nbsp;Peide Han ,&nbsp;Zhihua Wang","doi":"10.1016/j.corsci.2024.112481","DOIUrl":"10.1016/j.corsci.2024.112481","url":null,"abstract":"<div><div>The effect of boron (B) addition coupled with 500 ℃ pre-aging on the corrosion resistance of S31254 was systematically investigated. The results suggested that the diffusion of Mo to grain boundaries (GBs) played a crucial role in enhancing intergranular corrosion resistance. Additionally, the addition of B further promoted the uniform distribution of Mo during the pre-aging process by suppressing Mo segregation at GB. Ultimate, the B microalloying coupled with the pre-aging strategy optimized the composition of passive film through promoting the formation of Mo-rich passivation film, which significantly enhanced the corrosion resistance of Mo-containing stainless steel.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"240 ","pages":"Article 112481"},"PeriodicalIF":7.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142356946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced hot corrosion resistance of AlCoCrFeNi2.1 high entropy alloy coatings by extreme high-speed laser cladding 通过极高速激光熔覆增强 AlCoCrFeNi2.1 高熵合金涂层的耐热腐蚀性能
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-09-26 DOI: 10.1016/j.corsci.2024.112486
Li Zhang, Yan Ji, Yunxin Wang, Bin Yang
{"title":"Enhanced hot corrosion resistance of AlCoCrFeNi2.1 high entropy alloy coatings by extreme high-speed laser cladding","authors":"Li Zhang,&nbsp;Yan Ji,&nbsp;Yunxin Wang,&nbsp;Bin Yang","doi":"10.1016/j.corsci.2024.112486","DOIUrl":"10.1016/j.corsci.2024.112486","url":null,"abstract":"<div><div>Extreme high-speed laser cladding (EHLC) and multiple laser remelting (EHLC-MR) are used to improve hot corrosion resistance of AlCoCrFeNi<sub>2.1</sub> eutectic high-entropy alloy (EHEA) coatings by refining their microstructures, introducing low angle grain boundaries (LAGBs) and high densities of dislocations as well as higher compressive residual stresses (CRSs) in the coatings. The experimental results show that finer microstructure, more LAGBs and high densities of dislocations are beneficial to increase Al<sub>2</sub>O<sub>3</sub> nucleation sites and promote the uniform formation of the oxide layer on the coating surface. On the other hand, higher CRSs suppress the initiation and propagation of cracks as well as enhance the adhesion between the oxide layer and the substrate. Thus the hot corrosion resistance of the EHEA coatings under a molten salt of 75 % Na<sub>2</sub>SO<sub>4</sub> + 25 % NaCl at 900°C is improved significantly. These novel results provide effective approach for designing elevated-temperature materials.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"240 ","pages":"Article 112486"},"PeriodicalIF":7.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrosion resistance of multicomponent disilicate (Ho0.2Er0.2Tm0.2Yb0.2Lu0.2)2Si2O7 against CMAS and volcanic ash 多组分二硅酸盐(Ho0.2Er0.2Tm0.2Yb0.2Lu0.2)2Si2O7 对 CMAS 和火山灰的抗腐蚀性能
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-09-25 DOI: 10.1016/j.corsci.2024.112484
Wenbo Zhi , Yang Wu , Zhao Zhang , Min Luo , Bangyang Zhou , Wei Shao , Xingye Guo , Zheng Zhou , Dingyong He
{"title":"Corrosion resistance of multicomponent disilicate (Ho0.2Er0.2Tm0.2Yb0.2Lu0.2)2Si2O7 against CMAS and volcanic ash","authors":"Wenbo Zhi ,&nbsp;Yang Wu ,&nbsp;Zhao Zhang ,&nbsp;Min Luo ,&nbsp;Bangyang Zhou ,&nbsp;Wei Shao ,&nbsp;Xingye Guo ,&nbsp;Zheng Zhou ,&nbsp;Dingyong He","doi":"10.1016/j.corsci.2024.112484","DOIUrl":"10.1016/j.corsci.2024.112484","url":null,"abstract":"<div><div>With the increasing operating temperature of gas turbine engines, calcium-magnesium-aluminosilicate (CMAS) poses a serious threat on environmental barrier coatings (EBCs) applied on hot-sections of aero-engines. Here, we have synthesized a novel multicomponent disilicate—(Ho<sub>0.2</sub>Er<sub>0.2</sub>Tm<sub>0.2</sub>Yb<sub>0.2</sub>Lu<sub>0.2</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> (brief to (5RE<sub>0.2</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>), and comparatively studied its performance in the presence of synthesized CMAS and natural volcanic ash at 1400ºC. In comparison with Yb<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, (5RE<sub>0.2</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> has a shorter Si-O bond length and a larger RE-O bond length because of the larger average RE<sup>3+</sup> radius. After CMAS corrosion, some apatite grains precipitate at the CMAS/(5RE<sub>0.2</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> interface to develop a loose reaction layer, exhibiting a higher corrosion resistance than Yb<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>. Meanwhile, the consumption of CaO and release of SiO<sub>2</sub> during the chemical reaction process increase the viscosity of CMAS to some extent and thus weaken its infiltration propensity. For the volcanic ash case, it directly infiltrates into the interior of (5RE<sub>0.2</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> along grain boundaries without any reaction due to the relatively low CaO content, exhibiting a more serious attacking behavior. In addition, (5RE<sub>0.2</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> effectively increases the contact angle of molten volcanic ash due to its lower surface energy. These finds here provide a better understanding for the design and application of next-generation EBC material.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"240 ","pages":"Article 112484"},"PeriodicalIF":7.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superior hydrogen embrittlement resistance of CoCrNi-based medium-entropy alloy via coherent precipitation and grain boundary strengthening 通过相干析出和晶界强化提高钴铬镍基中熵合金的抗氢脆性能
IF 7.4 1区 材料科学
Corrosion Science Pub Date : 2024-09-24 DOI: 10.1016/j.corsci.2024.112483
Saiyu Liu , Zhao Xu , Yujie Zhu , Rongjian Shi , Kewei Gao , Xiaolu Pang
{"title":"Superior hydrogen embrittlement resistance of CoCrNi-based medium-entropy alloy via coherent precipitation and grain boundary strengthening","authors":"Saiyu Liu ,&nbsp;Zhao Xu ,&nbsp;Yujie Zhu ,&nbsp;Rongjian Shi ,&nbsp;Kewei Gao ,&nbsp;Xiaolu Pang","doi":"10.1016/j.corsci.2024.112483","DOIUrl":"10.1016/j.corsci.2024.112483","url":null,"abstract":"<div><div>The strength and HE resistance of CoCrNi-based medium-entropy alloys were simultaneously improved via adding 264 at.ppm boron and the precipitation of nanoscale coherent L1<sub>2</sub> (γ'-type) particles. After aging treatment, the proportion of intergranular cracking decreased from 58.2 % in the solution-treated alloy to 27.6 %. Meanwhile, the yield strength increased by 102 %, and the ductility decreased by only 35.9 %. Notably, the elongation loss is only 9.4 %. On one hand, the added boron segregates to the grain boundaries (GBs), enhance the GB cohesive strength. On the other hand, precipitated L1<sub>2</sub> captures H, thereby reducing the concentration of diffusible H in the matrix and decelerating the diffusion rate of H. During plastic deformation, the L1<sub>2</sub> particles impedes the movement of dislocations and reduces stress concentration at GBs. This is associated with the presence of a completely coherent interface between the precipitated phase and face centered cubic matrix. This research provides insights into the beneficial effects of L1<sub>2</sub> phase precipitation and GB boron segregation on the HE resistance of M/HEAs.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"240 ","pages":"Article 112483"},"PeriodicalIF":7.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信