采用多相沉淀法使1.9 gpa级沉淀硬化不锈钢具有优异的抗氢脆性能

IF 7.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhe Yang , Boxuan Cao , Zhenbao Liu , Yilu Zhao , Jun Wei
{"title":"采用多相沉淀法使1.9 gpa级沉淀硬化不锈钢具有优异的抗氢脆性能","authors":"Zhe Yang ,&nbsp;Boxuan Cao ,&nbsp;Zhenbao Liu ,&nbsp;Yilu Zhao ,&nbsp;Jun Wei","doi":"10.1016/j.corsci.2025.113315","DOIUrl":null,"url":null,"abstract":"<div><div>Overcoming the inherent high susceptibility of hydrogen embrittlement (HE) remains an enduring objective in the development of precipitation hardening stainless steels. This study demonstrates how multi-phase precipitation engineering synergistically enhances hydrogen resistance in duplex-aged Ferrium S53 steel through coupled experiments and simulations. TDS analysis identifies three distinct hydrogen desorption peaks corresponding to trapping at martensitic substructures, austenite interfaces, and nanoprecipitates, with the secondary-aged condition showing enhanced trapping capacity. Microstructural engineering through optimized aging generates high-density <em>M</em>₂C/α'<sub>Cr</sub> nanoprecipitates and stabilized austenite, shifting hydrogen desorption peaks to higher altitudes and reducing mobile hydrogen populations. Fracture analysis demonstrates the competing roles of plasticity-mediated and decohesion mechanisms, with their relative dominance evidenced by hybrid fracture features combining intergranular cracking with localized plasticity markers. First-principles calculations reveal Mo-modified carbides exhibit reduced vacancy formation barriers while increased hydrogen binding energy. The coordinated microstructure design achieves superior embrittlement resistance through: (i) TDS-verified hydrogen capture at engineered reversible traps, (ii) dislocation pinning that impedes hydrogen transport, and (iii) suppression of critical hydrogen accumulation at vulnerable interfaces. These findings establish a microstructure-property framework for developing hydrogen-resistant alloys via precipitation engineering.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"257 ","pages":"Article 113315"},"PeriodicalIF":7.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superior hydrogen embrittlement resistance of 1.9 GPa-grade precipitation hardening stainless steel achieved by multi-phase precipitation engineering\",\"authors\":\"Zhe Yang ,&nbsp;Boxuan Cao ,&nbsp;Zhenbao Liu ,&nbsp;Yilu Zhao ,&nbsp;Jun Wei\",\"doi\":\"10.1016/j.corsci.2025.113315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Overcoming the inherent high susceptibility of hydrogen embrittlement (HE) remains an enduring objective in the development of precipitation hardening stainless steels. This study demonstrates how multi-phase precipitation engineering synergistically enhances hydrogen resistance in duplex-aged Ferrium S53 steel through coupled experiments and simulations. TDS analysis identifies three distinct hydrogen desorption peaks corresponding to trapping at martensitic substructures, austenite interfaces, and nanoprecipitates, with the secondary-aged condition showing enhanced trapping capacity. Microstructural engineering through optimized aging generates high-density <em>M</em>₂C/α'<sub>Cr</sub> nanoprecipitates and stabilized austenite, shifting hydrogen desorption peaks to higher altitudes and reducing mobile hydrogen populations. Fracture analysis demonstrates the competing roles of plasticity-mediated and decohesion mechanisms, with their relative dominance evidenced by hybrid fracture features combining intergranular cracking with localized plasticity markers. First-principles calculations reveal Mo-modified carbides exhibit reduced vacancy formation barriers while increased hydrogen binding energy. The coordinated microstructure design achieves superior embrittlement resistance through: (i) TDS-verified hydrogen capture at engineered reversible traps, (ii) dislocation pinning that impedes hydrogen transport, and (iii) suppression of critical hydrogen accumulation at vulnerable interfaces. These findings establish a microstructure-property framework for developing hydrogen-resistant alloys via precipitation engineering.</div></div>\",\"PeriodicalId\":290,\"journal\":{\"name\":\"Corrosion Science\",\"volume\":\"257 \",\"pages\":\"Article 113315\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010938X25006432\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X25006432","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

克服氢脆(HE)固有的高敏感性仍然是沉淀硬化不锈钢发展的一个长期目标。本研究通过实验与模拟相结合的方法,论证了多相析出工程对双时效钢S53铁抗氢性能的协同增强作用。TDS分析确定了三个不同的氢解吸峰,分别对应于马氏体亚结构、奥氏体界面和纳米沉淀物的捕获,其中二次时效条件显示出增强的捕获能力。通过优化时效的微结构工程,产生高密度的M₂C/α′Cr纳米沉淀和稳定的奥氏体,使氢的解吸峰向更高的海拔移动,减少了可动氢的数量。断裂分析显示了塑性介导机制和脱粘机制的相互竞争作用,它们的相对优势体现在结合晶间断裂和局部塑性标志的混合断裂特征上。第一性原理计算表明,钼改性碳化物的空位形成势垒降低,氢结合能增加。协调的微观结构设计通过以下方式实现了优异的抗脆化性能:(i)经tds验证的在设计可逆陷阱处的氢捕获,(ii)阻碍氢传输的位错钉住,以及(iii)抑制脆弱界面处临界氢积累。这些发现为通过沉淀工程开发抗氢合金建立了显微组织-性能框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superior hydrogen embrittlement resistance of 1.9 GPa-grade precipitation hardening stainless steel achieved by multi-phase precipitation engineering
Overcoming the inherent high susceptibility of hydrogen embrittlement (HE) remains an enduring objective in the development of precipitation hardening stainless steels. This study demonstrates how multi-phase precipitation engineering synergistically enhances hydrogen resistance in duplex-aged Ferrium S53 steel through coupled experiments and simulations. TDS analysis identifies three distinct hydrogen desorption peaks corresponding to trapping at martensitic substructures, austenite interfaces, and nanoprecipitates, with the secondary-aged condition showing enhanced trapping capacity. Microstructural engineering through optimized aging generates high-density M₂C/α'Cr nanoprecipitates and stabilized austenite, shifting hydrogen desorption peaks to higher altitudes and reducing mobile hydrogen populations. Fracture analysis demonstrates the competing roles of plasticity-mediated and decohesion mechanisms, with their relative dominance evidenced by hybrid fracture features combining intergranular cracking with localized plasticity markers. First-principles calculations reveal Mo-modified carbides exhibit reduced vacancy formation barriers while increased hydrogen binding energy. The coordinated microstructure design achieves superior embrittlement resistance through: (i) TDS-verified hydrogen capture at engineered reversible traps, (ii) dislocation pinning that impedes hydrogen transport, and (iii) suppression of critical hydrogen accumulation at vulnerable interfaces. These findings establish a microstructure-property framework for developing hydrogen-resistant alloys via precipitation engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Corrosion Science
Corrosion Science 工程技术-材料科学:综合
CiteScore
13.60
自引率
18.10%
发文量
763
审稿时长
46 days
期刊介绍: Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies. This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信