氢微印揭示应变缺陷对奥氏体裂纹尖端附近氢分布的影响

IF 7.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Weijie Wu , Chenwei Xia , Zhicheng Fang , Xuewei Zhang , Xiaowei Wang , Jianming Gong , Jinxu Li
{"title":"氢微印揭示应变缺陷对奥氏体裂纹尖端附近氢分布的影响","authors":"Weijie Wu ,&nbsp;Chenwei Xia ,&nbsp;Zhicheng Fang ,&nbsp;Xuewei Zhang ,&nbsp;Xiaowei Wang ,&nbsp;Jianming Gong ,&nbsp;Jinxu Li","doi":"10.1016/j.corsci.2025.113314","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we combined hydrogen micro‑printing test with finite‑element (FE) analysis to investigate the microscale origins of crack‑tip hydrogen enrichment in 2101 duplex stainless steel during in situ hydrogen-charging slow strain rate tensile loading. Results show that hydrogen concentrates mainly on either side of austenitic hydrogen‑induced cracks and within the very narrow region immediately ahead of the tip, with no direct correlation to strain‑induced martensite or dislocation density. FE models incorporating hydrogen‑lowered vacancy‑formation energy demonstrate that hydrogen‑promoted vacancy generation via dislocation jog drag produces high local vacancy densities that trap hydrogen, accounting for the observed enrichment. These findings can help to gain a deeper understanding of the interactions and respective roles of various hydrogen embrittlement mechanisms.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"257 ","pages":"Article 113314"},"PeriodicalIF":7.4000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen microprinting revealing role of strain-induced defects on hydrogen distribution near austenite crack tip\",\"authors\":\"Weijie Wu ,&nbsp;Chenwei Xia ,&nbsp;Zhicheng Fang ,&nbsp;Xuewei Zhang ,&nbsp;Xiaowei Wang ,&nbsp;Jianming Gong ,&nbsp;Jinxu Li\",\"doi\":\"10.1016/j.corsci.2025.113314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we combined hydrogen micro‑printing test with finite‑element (FE) analysis to investigate the microscale origins of crack‑tip hydrogen enrichment in 2101 duplex stainless steel during in situ hydrogen-charging slow strain rate tensile loading. Results show that hydrogen concentrates mainly on either side of austenitic hydrogen‑induced cracks and within the very narrow region immediately ahead of the tip, with no direct correlation to strain‑induced martensite or dislocation density. FE models incorporating hydrogen‑lowered vacancy‑formation energy demonstrate that hydrogen‑promoted vacancy generation via dislocation jog drag produces high local vacancy densities that trap hydrogen, accounting for the observed enrichment. These findings can help to gain a deeper understanding of the interactions and respective roles of various hydrogen embrittlement mechanisms.</div></div>\",\"PeriodicalId\":290,\"journal\":{\"name\":\"Corrosion Science\",\"volume\":\"257 \",\"pages\":\"Article 113314\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010938X25006420\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X25006420","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究将氢微打印试验与有限元分析相结合,研究了2101双相不锈钢在原位充氢慢应变速率拉伸加载过程中裂纹尖端富氢的微观来源。结果表明,氢主要集中在奥氏体氢致裂纹的两侧和尖端前方非常狭窄的区域内,与应变诱发马氏体或位错密度没有直接关系。考虑氢降低空位形成能的有限元模型表明,氢通过位错jog阻力促进空位生成,产生了高的局部空位密度,从而捕获了氢,这是观察到的富集的原因。这些发现有助于更深入地了解各种氢脆机制的相互作用和各自的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen microprinting revealing role of strain-induced defects on hydrogen distribution near austenite crack tip
In this study, we combined hydrogen micro‑printing test with finite‑element (FE) analysis to investigate the microscale origins of crack‑tip hydrogen enrichment in 2101 duplex stainless steel during in situ hydrogen-charging slow strain rate tensile loading. Results show that hydrogen concentrates mainly on either side of austenitic hydrogen‑induced cracks and within the very narrow region immediately ahead of the tip, with no direct correlation to strain‑induced martensite or dislocation density. FE models incorporating hydrogen‑lowered vacancy‑formation energy demonstrate that hydrogen‑promoted vacancy generation via dislocation jog drag produces high local vacancy densities that trap hydrogen, accounting for the observed enrichment. These findings can help to gain a deeper understanding of the interactions and respective roles of various hydrogen embrittlement mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Corrosion Science
Corrosion Science 工程技术-材料科学:综合
CiteScore
13.60
自引率
18.10%
发文量
763
审稿时长
46 days
期刊介绍: Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies. This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信