Advanced Functional Materials最新文献

筛选
英文 中文
Unlocking the Origin of High-Temperature Superconductivity in Molecular Hydrides at Moderate Pressures 揭开分子氢化物在中等压力下高温超导性的起源
IF 19 1区 材料科学
Advanced Functional Materials Pub Date : 2024-11-18 DOI: 10.1002/adfm.202415910
Wendi Zhao, Austin Ellis, Defang Duan, Hongwei Wang, Qiwen Jiang, Mingyang Du, Tian Cui, Maosheng Miao
{"title":"Unlocking the Origin of High-Temperature Superconductivity in Molecular Hydrides at Moderate Pressures","authors":"Wendi Zhao, Austin Ellis, Defang Duan, Hongwei Wang, Qiwen Jiang, Mingyang Du, Tian Cui, Maosheng Miao","doi":"10.1002/adfm.202415910","DOIUrl":"https://doi.org/10.1002/adfm.202415910","url":null,"abstract":"The current pressing challenge in the field of superconducting hydride research is to lower the stable pressure of such materials for practical applications. Molecular hydrides are usually stable under moderate pressure, but the underlying metallization mechanism remains elusive. Here, the important role of chemical interactions in governing the structures and properties of molecular hydrides is demonstrated. A new mechanism is proposed for obtaining high-temperature and even room-temperature superconductivity in molecular hydrides and report that the ternary hydride NaKH<sub>12</sub> hosts <i>T</i><sub>c</sub> values up to 245 K at moderate pressure of 60 GPa. Both the excellent stability and superconductivity of NaKH<sub>12</sub> originate from the fact that the localized electrons in the interstitial region of the metal lattice occupying the crystal orbitals well matched with the hydrogen lattice and forming chemical templates to assist the assembly of H<sub>2</sub> units. These localized electrons weaken the H─H covalent bonds and improve the charge connectivity between the H<sub>2</sub> units, ensuring the strong coupling between electrons and hydrogen-dominated optical phonons. The theory provides a key perspective for understanding the superconductivity of molecular hydrides with various structural motifs, opening the door to obtaining high-temperature superconductors from molecular hydrides at moderate pressures.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"31 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Highly Potent Os@Au-TPA Coordination Structure-Based Sonosensitizer for Tumor Sono-Immunotherapies 用于肿瘤超声免疫疗法的高效力 Os@Au-TPA 配位结构声敏化剂
IF 19 1区 材料科学
Advanced Functional Materials Pub Date : 2024-11-18 DOI: 10.1002/adfm.202412564
Pengfei Xie, Xiao Rong, Xuelian Qin, Min Li, Yan Zuo, Bingjie Liu, Sujiao Cao, Jie Yang, Li Qiu
{"title":"A Highly Potent Os@Au-TPA Coordination Structure-Based Sonosensitizer for Tumor Sono-Immunotherapies","authors":"Pengfei Xie, Xiao Rong, Xuelian Qin, Min Li, Yan Zuo, Bingjie Liu, Sujiao Cao, Jie Yang, Li Qiu","doi":"10.1002/adfm.202412564","DOIUrl":"https://doi.org/10.1002/adfm.202412564","url":null,"abstract":"Ultrasound (US) becomes an appealing modality for stimulating or amplifying immune responses during cancer therapy, which is also termed sono-immunotherapy. However, the clinical prospect has not been fully realized due to the scarcity of efficient sonosensitizers. Herein, for the first time a novel Os-doped Au-tri(pyridin-4-yl) amine coordination structure (Os@Au-TPA)-based sonosensitizer is originally designed and synthesized for sono-immunotherapy of breast-metastasized tumors. Impressively, Os@Au-TPA shows much higher US-mediated <sup>1</sup>O<sub>2</sub>-producing activity than Au-TPA as well as the other traditional sonosensitizers, for example, ≈41.6 folds to ce6, 19.5 times to Protoporphyrin IX (PpIX), 12.0 to Indocyanine Green (ICG), and 11.1 to Iron phthalocyanine (Pc(Fe)). The Os@Au-TPA can not only generate abundant ROS upon US irradiation to implement sonodynamic therapy (SDT), stimulating cell apoptosis and further immunogenic cell death, but can also generate O<sub>2</sub> to alleviate hypoxia to promote the polarization of M2 to M1 macrophages to enhance tumor immunogenicity. As a result, when combined with PD-L1 antibody, it remodels the immunosuppressive tumor microenvironment, achieves concurrent sonodynamic-triggered immune activation, and eradicates both the original and distant-metastasized tumors efficiently. This work not only provides a new strategy to construct potent sonosensitizers from pyridine-metal coordination structures but also proves that sonosensitizers with high performance are crucial in boosting cancer sono-immunotherapy.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"99 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly Efficient Blue Organic Light-Emitting Devices Based on “Cross”-Shaped Hot Exciton Emitters 基于 "十字 "形热激子发射器的高效蓝色有机发光器件
IF 19 1区 材料科学
Advanced Functional Materials Pub Date : 2024-11-18 DOI: 10.1002/adfm.202415633
Chunyu Liu, Denghui Liu, Deli Li, Tong Wang, Di Liu, Xilin Mu, Jiasen Zhang, Tingting Feng, Kaibo Fang, Shi-Jian Su, Yubo Zhou, Siyao Wu, Wei Li, Ziyi Ge
{"title":"Highly Efficient Blue Organic Light-Emitting Devices Based on “Cross”-Shaped Hot Exciton Emitters","authors":"Chunyu Liu, Denghui Liu, Deli Li, Tong Wang, Di Liu, Xilin Mu, Jiasen Zhang, Tingting Feng, Kaibo Fang, Shi-Jian Su, Yubo Zhou, Siyao Wu, Wei Li, Ziyi Ge","doi":"10.1002/adfm.202415633","DOIUrl":"https://doi.org/10.1002/adfm.202415633","url":null,"abstract":"The development of blue electroluminescent (EL) materials remains a significant challenge in organic light-emitting diode (OLED) technology. In this study, a novel design strategy is proposed for blue hot exciton (HE) materials, which involves utilizing a “cross” shaped molecular structure characterized by substantial steric hindrance and a highly twisted conformation. The unique cross-shaped molecular architecture with distinct “arms” enables flexible control over the excited state properties of the molecule, thereby facilitating precise modulation of high-lying triplet and low-lying singlet excited state energy levels. Furthermore, the 3D spatial configuration of the molecule effectively reduces close molecular packing, thereby minimizing the risk of material concentration quenching. The proof-of-concept HE emitters CN-PI and TP-PI exhibit non-π-π stacking configurations in single crystals, achieving high photoluminescence quantum yield (PLQY) values up to 51.3% and 46.5% in non-doped thin films, respectively, along with rapid radiation decay rates and reasonable distribution of T<sub>m</sub> (m ≤ 5) and S<sub>1</sub> states. Non-doped OLEDs incorporating these emitters demonstrate exceptional external quantum efficiencies (EQE), reaching 7.3% and 6.4%, respectively, while exhibiting minimal efficiency roll-off at high luminance. This research introduces a promising approach for developing high-performance blue HE emitters.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"248 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradable Acid-Responsive Nanocarrier for Enhanced Antibiotic Therapy Against Drug-Resistant Helicobacter Pylori via Urease Inhibition 可生物降解的酸响应纳米载体,通过抑制尿素酶加强抗生素治疗抗药性幽门螺旋杆菌的效果
IF 19 1区 材料科学
Advanced Functional Materials Pub Date : 2024-11-18 DOI: 10.1002/adfm.202412893
Huizhen Fan, Ka Ioi Wong, Yingying Ma, Ming Li, Hanqing Li, Li Wei, Shen Wang, Min Yao, Min Lu
{"title":"Biodegradable Acid-Responsive Nanocarrier for Enhanced Antibiotic Therapy Against Drug-Resistant Helicobacter Pylori via Urease Inhibition","authors":"Huizhen Fan, Ka Ioi Wong, Yingying Ma, Ming Li, Hanqing Li, Li Wei, Shen Wang, Min Yao, Min Lu","doi":"10.1002/adfm.202412893","DOIUrl":"https://doi.org/10.1002/adfm.202412893","url":null,"abstract":"Metal ion-based inhibition of urease activity is a promising strategy for treating <i>Helicobacter pylori</i> (<i>H. pylori</i>) infections. However, the challenges of safe delivery and reducing cytotoxicity persist. In this study, an innovative nanocarrier capable of acid-responsive release of Ag<sup>+</sup> and antibiotics is developed, with complete degradation after treatment. Mesoporous organosilica nanoparticle (MON) is encapsulated with hyaluronic acid (HA) to prevent drug leakage and further coated with bacterial outer membrane vesicle (OMV) from <i>Escherichia coli</i> Nissle 1917, creating a nanocarrier with cell-protective capabilities. Ag<sup>+</sup> and antibiotic clarithromycin (CLR) are incorporated into the nanocarrier to form CLR-Ag<sup>+</sup>@MON@HA@OMV (CAMO), designed for the targeted treatment of gastric <i>H. pylori</i> infection. The HA encapsulation ensures acid-responsive release of CLR and Ag<sup>+</sup> in the stomach, preventing premature release at non-inflammatory sites. There is a potential for Ag⁺ in CAMO to replace Ni<sup>2</sup>⁺ at the active site of urease, enhancing the bactericidal effect of CLR through urease inhibition. Furthermore, the OMV provides additional cytoprotection, mitigating cell damage and inflammation response induced by the <i>H. pylori</i> infection. This study introduces a safe and effective nanocarrier that eradicates <i>H. pylori</i> and alleviates gastric inflammation.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"48 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanocellulose-Based Interfacial Solar Evaporator: Integrating Sustainable Materials and Micro-/Nano-Architectures for Solar Desalination 基于纳米纤维素的界面太阳能蒸发器:集成可持续材料和微/纳米结构,实现太阳能海水淡化
IF 19 1区 材料科学
Advanced Functional Materials Pub Date : 2024-11-17 DOI: 10.1002/adfm.202414576
Youngsang Ko, Suji Lee, Jieun Jang, Goomin Kwon, Kangyun Lee, Youngho Jeon, Ajeong Lee, Teahoon Park, Jeonghun Kim, Jungmok You
{"title":"Nanocellulose-Based Interfacial Solar Evaporator: Integrating Sustainable Materials and Micro-/Nano-Architectures for Solar Desalination","authors":"Youngsang Ko, Suji Lee, Jieun Jang, Goomin Kwon, Kangyun Lee, Youngho Jeon, Ajeong Lee, Teahoon Park, Jeonghun Kim, Jungmok You","doi":"10.1002/adfm.202414576","DOIUrl":"https://doi.org/10.1002/adfm.202414576","url":null,"abstract":"Clean-water harvesting through solar interfacial evaporation technology has recently emerged as a strategy for resolving global water scarcity. In this study, rapid carbon-dioxide-laser-induced carbonization and facile ice-templating is employed to construct a cellulose-based solar evaporator bearing a hybrid multi-layer micro-/nano-architecture (i.e., a laser-induced carbon (LC) nanostructure and a cellulose aerogel (CA) nano/microstructure). The LC exhibits a light-absorbing/photothermal nanoporous carbon structure that offers high light absorption and multiple light scattering. Additionally, the CA exhibits numerous nanopores and unidirectional microchannels that facilitate rapid water transport via capillary action. This hybrid LC/CA micro-/nano-architecture enabled rapid vapor generation with an average water evaporation rate (ν) of 1.62 kg m<sup>−2</sup> h<sup>−1</sup> and an evaporation efficiency (η) of 66.6%. To further enhance the evaporation performance, a polydimethylsiloxane (PDMS) layer is coated onto the side of the LC/CA evaporator to increase its floatability in the simulated water; ν and η of the PDMS-coated LC/CA evaporator (LC/CA/PDMS) increased to 1.9 kg m<sup>−2</sup> h<sup>−1</sup> and 83.8%, respectively. Additionally, the LC/CA/PDMS evaporator exhibited a high ν value of 1.68 kg m<sup>−2</sup> h<sup>−1</sup> in simulated seawater, originating from excellent resistance to salt accumulation via its self-cleaning ability. Furthermore, the solar evaporator exhibited scalability for fabrication as well as biodegradable properties.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"13 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integration of Sensory Memory Process Display System for Gait Recognition 整合步态识别的感官记忆过程显示系统
IF 19 1区 材料科学
Advanced Functional Materials Pub Date : 2024-11-17 DOI: 10.1002/adfm.202416619
Tao Sun, Meng Qi, Qing-Xiu Li, Hang-Fei Li, Zhi-Peng Feng, Run-Ze Xu, You Zhou, Yu Wen, Gui-Jun Li, Ye Zhou, Su-Ting Han
{"title":"Integration of Sensory Memory Process Display System for Gait Recognition","authors":"Tao Sun, Meng Qi, Qing-Xiu Li, Hang-Fei Li, Zhi-Peng Feng, Run-Ze Xu, You Zhou, Yu Wen, Gui-Jun Li, Ye Zhou, Su-Ting Han","doi":"10.1002/adfm.202416619","DOIUrl":"https://doi.org/10.1002/adfm.202416619","url":null,"abstract":"Gait is among the most dependable, accurate, and secure methods of biometric identification. However, high power consumption and low computing capability are two major obstacles on wearable sensors-based gait recognition system. In this work, an integrated system is reported combining a triboelectric nanogenerator (TENG), a memristor (Ag/HfO<sub>x</sub>/Pt), and perovskite-based multicolor LEDs (PMCLED) for the visualization and recognition of foot patterns through signal-on-none and multi-wavelength on-device preprocessing. The flexible TENG acts as a sensory receptor, generating voltage based on the duration and intensity of pressure, which in turn promotes voltage-triggered synaptic plasticity in the memristor. The PMCLED, with its threshold switching and multi-wavelength emission characteristics, enables nonlinear filtering and amplification of the synaptic signal from the memristor, resulting in a simplified system design and reduced background noise. Additionally, the effectiveness of on-device preprocessing is validated based on a 5 × 5 array of integrated devices and software-built neural network for foot pattern visualization and recognition. The proposed system is able to recognize the on-device preprocessed images with high accuracy, indicating great potentials in both healthcare monitoring and human-machine interaction.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"13 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stimuli-Responsive Optical Materials Based on Hypervalent Antimony-Containing Conjugated Molecules 基于超价含锑共轭分子的刺激响应型光学材料
IF 19 1区 材料科学
Advanced Functional Materials Pub Date : 2024-11-17 DOI: 10.1002/adfm.202418600
Kazuya Tanimura, Masayuki Gon, Kazuo Tanaka, Yoshiki Chujo
{"title":"Stimuli-Responsive Optical Materials Based on Hypervalent Antimony-Containing Conjugated Molecules","authors":"Kazuya Tanimura, Masayuki Gon, Kazuo Tanaka, Yoshiki Chujo","doi":"10.1002/adfm.202418600","DOIUrl":"https://doi.org/10.1002/adfm.202418600","url":null,"abstract":"Stimuli-responsive materials have been applied for sensor devices because they can transform and amplify various target stimuli into observable signals. Much effort has been devoted to exploring effective molecular designs for obtaining stimuli-responsive behaviors by taking advantage of the unique optoelectronic properties of π-conjugated molecules involving various elements. This study focuses on the modulation of the electronic state of the π-conjugated scaffolds by the oxidation number change of the hypervalent antimony. This study demonstrate that the strength of the intramolecular interaction between hypervalent antimony and the π-conjugated framework can be tuned with ligand structure, substituent effect, and oxidation number shifts of hypervalent antimony. In particular, the color changes represented by hypsochromic and bathochromic wavelength shifts of optical bands are achieved by the oxidative reaction of hypervalent antimony in the solid state. Significantly, the direction of the color changes can be confidently predicted by quantum chemical calculations. The findings, based on the electronic interaction between π-conjugated scaffolds and hypervalent main-group elements, provide logical design strategies for advanced stimuli-responsive materials.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"50 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facet Engineering Modulates d-π* Hybridization for Boosting Antimicrobial Activity 刻面工程调节 d-π* 杂交,增强抗菌活性
IF 19 1区 材料科学
Advanced Functional Materials Pub Date : 2024-11-17 DOI: 10.1002/adfm.202418440
Kun Yu, Huichao Ji, Guangli Ye, Liangjie Fu, Xiongbo Dong, Huaming Yang
{"title":"Facet Engineering Modulates d-π* Hybridization for Boosting Antimicrobial Activity","authors":"Kun Yu, Huichao Ji, Guangli Ye, Liangjie Fu, Xiongbo Dong, Huaming Yang","doi":"10.1002/adfm.202418440","DOIUrl":"https://doi.org/10.1002/adfm.202418440","url":null,"abstract":"Reactive oxygen species (ROS) have been growing as an emerging “hot” topic in antimicrobial applications. However, optimizing antimicrobial activity by enhancing ROS generation remains a formidable challenge. Here, using bassanite as a proof of concept, the facet engineering of bassanite matrix can enhance the ROS generation efficiency via tuning the <i>d</i>-band center of Cu atom is proposed. Theoretical calculation and experimental investigations reveal that the <i>d</i>-band center of Cu atoms is significantly shifted upward when Cu doped into the (204) facet of bassanite compared to the (400) facet. A higher <i>d</i>-band center facilitates adsorption and activation between Cu and O<sub>2</sub> through the formation of stronger <i>d</i>-<i>π<sup>*</sup></i> orbital hybridization, resulting in increased ROS production. Through engineering, the material exhibits better antimicrobial activity when Cu doped into the (204) facet, which presents a clear potential in construction materials and personal protection. This work shed light on designing new materials with high antimicrobial activity and the application of facet engineering.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"18 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Covalent Organic Framework-Enhanced Metal Halide Perovskites for Selective and Sensitive Gas Sensing 用于选择性和灵敏气体传感的共价有机框架增强型金属卤化物 Perovskites
IF 19 1区 材料科学
Advanced Functional Materials Pub Date : 2024-11-17 DOI: 10.1002/adfm.202418897
Wen Ye, Meng Li, Guixiang Li, Lihua Jiang, Shun Tian, Shihong Dong, Qingfeng Xu, Dongyun Chen, Mohammad Khaja Nazeeruddin, Paul J. Dyson, Antonio Abate, Jian-Mei Lu
{"title":"Covalent Organic Framework-Enhanced Metal Halide Perovskites for Selective and Sensitive Gas Sensing","authors":"Wen Ye, Meng Li, Guixiang Li, Lihua Jiang, Shun Tian, Shihong Dong, Qingfeng Xu, Dongyun Chen, Mohammad Khaja Nazeeruddin, Paul J. Dyson, Antonio Abate, Jian-Mei Lu","doi":"10.1002/adfm.202418897","DOIUrl":"https://doi.org/10.1002/adfm.202418897","url":null,"abstract":"Solution-processed lead-free halide perovskite gas sensors possess low gas detection limits, offering promising alternatives to traditional metal oxide chemiresistors. However, halide perovskite chemiresistors often suffer from poor selectivity and durability due to a lack of coordinatively unsaturated surface metal ions and their sensitivity to humidity. To address these issues, a general strategy is presented in which the Cs<sub>2</sub>PdBr<sub>6</sub> perovskite surface is coated with covalent organic framework (COF) to provide hybrid sensor materials that are highly sensitive to specific gases and demonstrate excellent stability under real-working conditions. The hybrid chemiresistors demonstrate high sensitivity and controllable selectivity toward NO<sub>2</sub> or NH<sub>3</sub> gases. Specifically, TAPB–PDA@Cs<sub>2</sub>PdBr<sub>6</sub> achieves a detection limit of 10 ppb for NO<sub>2</sub>, the lowest value reported for a perovskite-based gas sensor, maintaining its performance after continuous exposure to ambient air for several weeks. In contrast, COF-5@Cs<sub>2</sub>PdBr<sub>6</sub> shows high selectivity to NH<sub>3</sub> and has a detection limit of 40 ppb. Structural and spectroscopic characterization combined with mechanistic studies provide molecular-level insights into the outstanding properties of these new hybrid sensor materials, which set a new benchmark in the field, i.e., surpassing the selectivity and sensitivity of conventional halide perovskite sensors.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"21 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Schottky Interface Engineering in Ti3C2Tx/ZnS Organic Hydrogels for High-Performance Multifunctional Flexible Absorbers 用于高性能多功能柔性吸收器的 Ti3C2Tx/ZnS 有机水凝胶中的肖特基界面工程技术
IF 19 1区 材料科学
Advanced Functional Materials Pub Date : 2024-11-17 DOI: 10.1002/adfm.202417346
Yuhong Cui, Guoliang Ru, Tianyi Zhang, Ke Yang, Shujuan Liu, Weihong Qi, Qian Ye, Xuqing Liu, Feng Zhou
{"title":"Schottky Interface Engineering in Ti3C2Tx/ZnS Organic Hydrogels for High-Performance Multifunctional Flexible Absorbers","authors":"Yuhong Cui, Guoliang Ru, Tianyi Zhang, Ke Yang, Shujuan Liu, Weihong Qi, Qian Ye, Xuqing Liu, Feng Zhou","doi":"10.1002/adfm.202417346","DOIUrl":"https://doi.org/10.1002/adfm.202417346","url":null,"abstract":"With the rapid advancement of wearable electronics, soft robotics, and camouflage technologies, there is an urgent demand for flexible, multifunctional electromagnetic wave absorbing materials. Traditional absorbers, including metal- and carbon-based materials, often lack the flexibility required for such applications. In this work, a novel strategy is proposed for developing a flexible absorber by combining a conductive filler with a Schottky heterogeneous interface and a polymer network framework. Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene is modified with ZnS via a low-temperature hydrothermal method, forming a Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/ZnS composite. This composite is subsequently embedded in a copolymer matrix of polyvinyl alcohol (PVA) and acrylamide (AAm), dispersed in a binary water-glycerol solution. The Schottky interface between Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> and ZnS enhances electron transfer at the heterophase boundary, significantly improving interface polarisation. Simultaneously, interactions between water and glycerol restrict the rotation of polar molecules under external electromagnetic fields, optimising polarisation loss within the gel. Experimental results demonstrate that the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/ZnS gel achieves a minimum reflection loss (RL<sub>min</sub>) of −43.76 dB at 8.79 GHz, with an effective absorption bandwidth (EAB) covering the entire X-band. Additionally, the gel exhibit exceptional stretchability, frost resistance, shape adaptability, and photothermal conversion properties.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"13 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信